The aim of the programme is to equip the student with the knowledge, skills and understanding required to operate as an independent professional within the disciplines covered by the Master’s programme, and to be a suitable candidate for a subsequent career in biomedical research.

The Master’s programme in Biomedical Sciences guarantees its students in-depth research experience with a solid academic basis, combined with the communication skills that are needed to perform at the international level. While the two-year programme is taught in English, some Dutch components are included in the Education specialization. The student can choose from the following specializations:

Research:
- Cardiovascular diseases
- Immunology
- Infectious diseases
- International public health
- Psychophysiology
- Medical and behavioral genomics

Management, Communication, Education (to be combined with a research specialization):
- Societal specialization (M)
- Communication specialization (C)
- Education specialization (E)

The Societal, Communication and Education specializations are one-year programmes that cannot be combined with each other, and which must be combined with one of the research specializations. The year schedule 2013 - 2014 can be found at the FALW-website.

Further information about the MSc programme Biomedical Sciences.
A complete programme description can be found at the FALW-website.
Inhoudsopgave

<table>
<thead>
<tr>
<th>Component</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expired programme components Biomedical</td>
<td>1</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, Non-Research Specialisation Programmes</td>
<td>1</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, Communication Specialisation</td>
<td>1</td>
</tr>
<tr>
<td>Biology</td>
<td>1</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, Specialisation Science in Society</td>
<td>2</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, Research Specialisation Programmes</td>
<td>2</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. Cardiovascular Diseases</td>
<td>2</td>
</tr>
<tr>
<td>spec. Cardiovascular Dis. - choose 18 EC</td>
<td>3</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. Immunology</td>
<td>3</td>
</tr>
<tr>
<td>verplichte vakken</td>
<td>4</td>
</tr>
<tr>
<td>kies tenminste 2 van deze cursussen</td>
<td>4</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. Infectious Diseases</td>
<td>4</td>
</tr>
<tr>
<td>verplichte vakken</td>
<td>4</td>
</tr>
<tr>
<td>minimaal 6 EC te behalen</td>
<td>5</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. International Public Health</td>
<td>5</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. Medical and Behavioural Genomics</td>
<td>5</td>
</tr>
<tr>
<td>verplicht vak</td>
<td>6</td>
</tr>
<tr>
<td>minimaal 17 EC te behalen</td>
<td>6</td>
</tr>
<tr>
<td>MSc Biomedical Sciences, spec. Psychophysiology</td>
<td>6</td>
</tr>
<tr>
<td>Msc Biomedical Sciences, compulsory courses</td>
<td>7</td>
</tr>
<tr>
<td>Capita courses MSc Biomedical Science</td>
<td>7</td>
</tr>
<tr>
<td>Vak: Advanced Human Neurophysiology (Periode 2)</td>
<td>7</td>
</tr>
<tr>
<td>Vak: Advanced Molecular Immunology and Cell Biology (Periode 1)</td>
<td>10</td>
</tr>
<tr>
<td>Vak: Analysis of Governmental Policy (Periode 1)</td>
<td>12</td>
</tr>
<tr>
<td>Vak: Business Management in Health and Life Sciences (Periode 2)</td>
<td>14</td>
</tr>
<tr>
<td>Vak: Caput Dilemmas in the Implementation of Public Health Programmes ()</td>
<td>15</td>
</tr>
<tr>
<td>Vak: Caput Institutionalising Participatory Approaches in the South ()</td>
<td>16</td>
</tr>
<tr>
<td>Vak: Caput Protein Structure as Molecular Basis of Disease (Ac. Jaar (september))</td>
<td>17</td>
</tr>
<tr>
<td>Vak: Clinical Aspects of Heart and Circulation (Periode 1)</td>
<td>18</td>
</tr>
<tr>
<td>Vak: Clinical development and clinical trials (Periode 3)</td>
<td>19</td>
</tr>
<tr>
<td>Vak: Clinical Immunology (Periode 2)</td>
<td>21</td>
</tr>
<tr>
<td>Vak: Communication, Organization and Management (Periode 2)</td>
<td>22</td>
</tr>
<tr>
<td>Vak: Complex Trait Genetics (Periode 2)</td>
<td>24</td>
</tr>
<tr>
<td>Vak: Containment Strategies of Infectious Diseases in Global Context (Periode 1)</td>
<td>26</td>
</tr>
<tr>
<td>Vak: Disability and Development (Periode 2)</td>
<td>27</td>
</tr>
<tr>
<td>Vak: Entrepreneurship in Health and Life Sciences (Periode 2)</td>
<td>29</td>
</tr>
<tr>
<td>Vak: Ethics in Life Sciences (Periode 3)</td>
<td>31</td>
</tr>
<tr>
<td>Vak: Experimental and clinical neuroendocrinology (Periode 2)</td>
<td>32</td>
</tr>
<tr>
<td>Vak: Functional Brain Imaging (Periode 1)</td>
<td>33</td>
</tr>
<tr>
<td>Vak: Gene Hunting (Periode 1)</td>
<td>35</td>
</tr>
<tr>
<td>Vak: Genomic Data Analysis (Periode 2)</td>
<td>36</td>
</tr>
<tr>
<td>Vak: Health Geography (Periode 2)</td>
<td>38</td>
</tr>
<tr>
<td>Vak: Health, Globalisation and Human Rights (Periode 2)</td>
<td>39</td>
</tr>
<tr>
<td>Vak: History of Life Sciences (Ac. Jaar (september), Periode 3)</td>
<td>41</td>
</tr>
<tr>
<td>Vak: Immunity and Disease (Periode 1)</td>
<td>42</td>
</tr>
<tr>
<td>Vak: International Comparative Analyses of Health Care Systems (Periode 3)</td>
<td>43</td>
</tr>
<tr>
<td>Vak: Internship Biomedical Sciences (Ac. Jaar (september))</td>
<td>46</td>
</tr>
<tr>
<td>Vak: Internship Cardiovascular Diseases (Ac. Jaar (september))</td>
<td>46</td>
</tr>
<tr>
<td>Vak: Internship Communication Specialisation (Ac. Jaar (september))</td>
<td>46</td>
</tr>
<tr>
<td>Vak: Internship Educational Specialisation (Ac. Jaar (september))</td>
<td>46</td>
</tr>
<tr>
<td>Vak: Internship Immunology (Ac. Jaar (september))</td>
<td>46</td>
</tr>
<tr>
<td>Vak: Internship Infectious Diseases (Ac. Jaar (september))</td>
<td>47</td>
</tr>
<tr>
<td>Vak: Internship International Public Health (Ac. Jaar (september))</td>
<td>47</td>
</tr>
<tr>
<td>Vak: Internship Med. and Behavioural Genomics (Ac. Jaar (september))</td>
<td>47</td>
</tr>
<tr>
<td>Vak: Internship Societal Specialisation (Ac. Jaar (september))</td>
<td>47</td>
</tr>
<tr>
<td>Vak: Literature thesis Biomedical Sciences (Ac. Jaar (september))</td>
<td>48</td>
</tr>
<tr>
<td>Vak: Molecular Infection Biology (Periode 2)</td>
<td>48</td>
</tr>
<tr>
<td>Vak: Parasitology (Periode 2)</td>
<td>49</td>
</tr>
<tr>
<td>Vak: Pathophysiology of Heart and Circulation (Periode 1)</td>
<td>51</td>
</tr>
<tr>
<td>Vak: Policy, Management and Organisation in International Public Health (Periode 2)</td>
<td>51</td>
</tr>
<tr>
<td>Vak: Policy, Politics and Participation (Periode 2)</td>
<td>52</td>
</tr>
<tr>
<td>Vak: Psychophysiology (Periode 1)</td>
<td>54</td>
</tr>
<tr>
<td>Vak: Qualitative and Quantitative Research Methods (Periode 1)</td>
<td>55</td>
</tr>
<tr>
<td>Vak: Remodelling of the Circulatory System (Periode 2)</td>
<td>56</td>
</tr>
<tr>
<td>Vak: Research Methods for Need Assessments (Periode 1)</td>
<td>57</td>
</tr>
<tr>
<td>Vak: Science and Communication (Periode 1)</td>
<td>59</td>
</tr>
<tr>
<td>Vak: Science in Dialogue (Periode 2)</td>
<td>60</td>
</tr>
<tr>
<td>Vak: Science Journalism (Periode 2)</td>
<td>61</td>
</tr>
<tr>
<td>Vak: Science Museology (Periode 3)</td>
<td>63</td>
</tr>
<tr>
<td>Vak: Scientific Writing in English (Ac. Jaar (september))</td>
<td>64</td>
</tr>
<tr>
<td>Vak: Statistical Genetics for Gene Finding ()</td>
<td>66</td>
</tr>
<tr>
<td>Vak: Statistical Genetics for Gene Finding (Periode 1)</td>
<td>67</td>
</tr>
<tr>
<td>Vak: Vascular Function and Metabolic Diseases (Ac. Jaar (september))</td>
<td>69</td>
</tr>
<tr>
<td>Vak: Viral Oncogenesis (Periode 4)</td>
<td>70</td>
</tr>
</tbody>
</table>
Expired programme components Biomedical

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Life Sciences</td>
<td>Ac. Year (September), Period 3</td>
<td>3.0</td>
<td>AM_471017</td>
</tr>
<tr>
<td>Statistical Genetics for Gene Finding</td>
<td></td>
<td>5.0</td>
<td>AM_470734</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, Non-Research Specialisation Programmes

Programme components:

- Communication Specialization
- Education specialization Biology
- Societal Specialization

MSc Biomedical Sciences, Communication Specialisation

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication, Organization and Management</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470572</td>
</tr>
<tr>
<td>Internship Communication Specialisation</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_471145</td>
</tr>
<tr>
<td>Qualitative and Quantitative Research Methods</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470582</td>
</tr>
<tr>
<td>Science and Communication</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470587</td>
</tr>
<tr>
<td>Science in Dialogue</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_1002</td>
</tr>
<tr>
<td>Science Journalism</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_471014</td>
</tr>
<tr>
<td>Science Museology</td>
<td>Period 3</td>
<td>6.0</td>
<td>AM_470590</td>
</tr>
</tbody>
</table>

Biology

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship Educational Specialisation</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_471143</td>
</tr>
</tbody>
</table>
MSc Biomedical Sciences, Specialisation Science in Society

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Governmental Policy</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470571</td>
</tr>
<tr>
<td>Business Management in Health and Life Sciences</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470584</td>
</tr>
<tr>
<td>Clinical development and clinical trials</td>
<td>Period 3</td>
<td>6.0</td>
<td>AM_470585</td>
</tr>
<tr>
<td>Communication, Organization and Management</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470572</td>
</tr>
<tr>
<td>Disability and Development</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470588</td>
</tr>
<tr>
<td>Entrepreneurship in Health and Life Sciences</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470575</td>
</tr>
<tr>
<td>Health, Globalisation and Human Rights</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470818</td>
</tr>
<tr>
<td>Internship Societal Specialisation</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_471144</td>
</tr>
<tr>
<td>Policy, Politics and Participation</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470589</td>
</tr>
<tr>
<td>Qualitative and Quantitative Research Methods</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470582</td>
</tr>
<tr>
<td>Science in Dialogue</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_1002</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, Research Specialisation Programmes

Programme components:

- Specialization Cardiovascular Diseases
- Specialization Immunology
- Specialization Infectious Diseases
- Specialization International Public Health
- Specialization Medical and Behavioral Genomics
- Specialization Psychophysiology

MSc Biomedical Sciences, spec. Cardiovascular Diseases

The Master’s graduate with a specialization in Cardiovascular diseases has a broad understanding of the cardiovascular system. The topics that are addressed range from atherosclerosis to ventricular dysfunction, giving the student a thorough overview of this particular field of research. The Master’s graduate has the ability to conduct scientific research in the field of cardiovascular disease and to critically assess the results of cardiovascular research. The Master’s graduate has specialized in one of the subjects within the field of cardiovascular disease. He/she possesses knowledge of current theory and the key
research questions in this field and has an understanding of the scientific and social relevance of this subject area.

Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC.

Opleidingsdelen:

- spec. Cardiovascular Dis. - choose 18 EC

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship Cardiovascular Diseases</td>
<td>Ac. Jaar (september)</td>
<td>30.0</td>
<td>AM_471136</td>
</tr>
</tbody>
</table>

spec. Cardiovascular Dis. - choose 18 EC

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Aspects of Heart and Circulation</td>
<td>Periode 1</td>
<td>6.0</td>
<td>M_CCLINBIO09</td>
</tr>
<tr>
<td>Pathophysiology of Heart and Circulation</td>
<td>Periode 1</td>
<td>6.0</td>
<td>M_CPATHO09</td>
</tr>
<tr>
<td>Remodelling of the Circulatory System</td>
<td>Periode 2</td>
<td>6.0</td>
<td>M_CREMODE09</td>
</tr>
<tr>
<td>Vascular Function and Metabolic Diseases</td>
<td>Ac. Jaar (september)</td>
<td>6.0</td>
<td>M_CVASCfu09</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, spec. Immunology

The Master’s graduate with a specialization in Immunology has a broad understanding of immunological processes, ranging from the molecular and cellular interactions between host and pathogen to an integrative knowledge of the role of the immune system in various pathologies, such as cancer, infectious diseases and autoimmunity. The Master’s graduate has specialized in one of the subjects within the field of immunology. He/she possesses knowledge of current theory and the key research questions in the field of immunology and has an understanding of the scientific and social relevance of this subject area.

Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC.

Opleidingsdelen:
- verplichte vakken
- kies tenminste 2 van deze cursussen

verplichte vakken

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Molecular Immunology and Cell Biology</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470656</td>
</tr>
<tr>
<td>Internship Immunology</td>
<td>Ac. Jaar (september)</td>
<td>30.0</td>
<td>AM_471137</td>
</tr>
</tbody>
</table>

kies tenminste 2 van deze cursussen

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Immunology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470655</td>
</tr>
<tr>
<td>Immunity and Disease</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_1031</td>
</tr>
<tr>
<td>Molecular Infection Biology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470657</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, spec. Infectious Diseases

The Master’s graduate with a specialization in Infectious diseases has a broad understanding of the biology of pathogenic organisms and the interaction between pathogens and their hosts. The Master’s graduate has the ability to conduct scientific research in the field of medical microbiology and to critically assess the results of microbial research. The Master’s graduate has specialized in one of the subjects within the field of medical microbiology. He/she possesses knowledge of current theory and the key research questions in this field and has an understanding of the scientific and social relevance of this subject area.

Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC.

Opleidingsdelen:

- verplichte vakken
- minimaal 6 EC te behalen

verplichte vakken
Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Molecular Immunology and Cell Biology</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470656</td>
</tr>
<tr>
<td>Internship Infectious Diseases</td>
<td>Ac. Jaar (september)</td>
<td>30.0</td>
<td>AM_471138</td>
</tr>
<tr>
<td>Molecular Infection Biology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470657</td>
</tr>
</tbody>
</table>

minimaal 6 EC te behalen

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Strategies of Infectious Diseases in Global Context</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470127</td>
</tr>
<tr>
<td>Health Geography</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470094</td>
</tr>
<tr>
<td>Parasitology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470052</td>
</tr>
<tr>
<td>Viral Oncogenesis</td>
<td>Periode 4</td>
<td>3.0</td>
<td>M_OVIRONC03</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, spec. International Public Health

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containment Strategies of Infectious Diseases in Global Context</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470127</td>
</tr>
<tr>
<td>Disability and Development</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470588</td>
</tr>
<tr>
<td>Health, Globalisation and Human Rights</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470818</td>
</tr>
<tr>
<td>International Comparative Analyses of Health Care Systems</td>
<td>Period 3</td>
<td>6.0</td>
<td>AM_470820</td>
</tr>
<tr>
<td>Internship International Public Health</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_471139</td>
</tr>
<tr>
<td>Policy, Management and Organisation in International Public Health</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470819</td>
</tr>
<tr>
<td>Research Methods for Need Assessments</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_470817</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, spec. Medical and Behavioural Genomics
The Master’s graduate with a specialization in Medical and Behavioral Genomics has an understanding and knowledge of the application of genomics in studying complex disorders and traits, including mental health and neurodevelopmental disorders. In this rapidly developing field, the student’s knowledge covers basic classical genetics and biometrical approaches, genetic epidemiology and genetic association and linkage methods. Skills include application of these methods not only to data from genetics and genomics platforms, but also from gene expression (transcriptomics) and endophenotypes.

Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC.

Opleidingsdelen:

- verplicht vak
- minimaal 17 EC te behalen

verplicht vak

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internship Med. and Behavioural Genomics</td>
<td>Ac. Jaar (september)</td>
<td>30.0</td>
<td>AM_471142</td>
</tr>
</tbody>
</table>

minimaal 17 EC te behalen

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Trait Genetics</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470733</td>
</tr>
<tr>
<td>Gene Hunting</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470729</td>
</tr>
<tr>
<td>Genomic Data Analysis</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_1008</td>
</tr>
<tr>
<td>Statistical Genetics for Gene Finding</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_1040</td>
</tr>
</tbody>
</table>

MSc Biomedical Sciences, spec. Psychophysiology

The Master’s graduate with a specialization in Psychophysiology has a broad understanding of the functions of the central and peripheral nervous system and a special knowledge of the measurement of these functions through physiological recording techniques (cardiovascular, EEG, MRI, hormones). The Master’s graduate has the ability to conduct scientific research in the field of psychophysiology and to critically assess the results of psychophysiological research. The Master’s graduate has specialized in one of the subjects within the field of
psychophysiology. He/she possesses practical skills in psychophysiological measurement and has knowledge of current theory and the key research questions in this field. She/he has an understanding of the scientific and social relevance of this subject area.

Three specialised courses (18 EC) and a research placement (30 EC) are compulsory, and: an extra optional course (6 EC) or an extension of the internship (6 EC) or the literature study in the field of specialization (9 EC). The course programme consists of the following components, with the study load for each component given in EC.

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Human Neurophysiology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_1003</td>
</tr>
<tr>
<td>Experimental and clinical neuroendocrinology</td>
<td>Periode 2</td>
<td>6.0</td>
<td>AM_470700</td>
</tr>
<tr>
<td>Functional Brain Imaging</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470715</td>
</tr>
<tr>
<td>Psychophysiology</td>
<td>Periode 1</td>
<td>6.0</td>
<td>AM_470736</td>
</tr>
</tbody>
</table>

Msc Biomedical Sciences, compulsory courses

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethics in Life Sciences</td>
<td>Periode 3</td>
<td>3.0</td>
<td>AM_470707</td>
</tr>
<tr>
<td>Literature thesis Biomedical Sciences</td>
<td>Ac. Jaar (september)</td>
<td>9.0</td>
<td>AM_471135</td>
</tr>
<tr>
<td>Scientific Writing in English</td>
<td>Ac. Jaar (september)</td>
<td>3.0</td>
<td>AM_471023</td>
</tr>
</tbody>
</table>

Capita courses MSc Biomedical Science

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caput Dilemmas in the Implementation of Public Health Programmes</td>
<td></td>
<td>3.0</td>
<td>AM_470565</td>
</tr>
<tr>
<td>Caput Institutionalising Participatory Approaches in the South</td>
<td></td>
<td>3.0</td>
<td>AM_470567</td>
</tr>
<tr>
<td>Caput Protein Structure as Molecular Basis of Disease</td>
<td>Ac. Jaar (september)</td>
<td>6.0</td>
<td>AM_470120</td>
</tr>
<tr>
<td>Internship Biomedical Sciences</td>
<td>Ac. Jaar (september)</td>
<td>30.0</td>
<td>AM_471158</td>
</tr>
</tbody>
</table>

Advanced Human Neurophysiology
Doel vak
At the end of the course the student should be able to:
1. Prepare a subject for an EEG measurement and understand acquisition settings such as sampling frequency, filters, impedance, etc.
2. Explain how the human brain generates scalp electroencephalographic (EEG) signals, both ongoing oscillations and event-related potentials (ERPs).
3. Analyze both ongoing (spontaneous) and ERP data using MATLAB toolboxes.
4. Understand the principles and give examples of these techniques as applied in various scientific and medical fields, including sleep research, brain-computer interfacing, and genetics.
5. Explain the principle of inverse modeling and outline the possibilities and limitations based on own experiences.
6. Apply state-of-the-art time-series techniques to M/EEG data and understand their interpretation as a biomarker and genetic marker for cognition and psychopathology.
7. Perform quantitative and statistical analysis of own data and use the results to make conclusions about the relation between brain activity and cognition/behavior.
8. Summarize the results of your research on a poster and present and defend the interpretation. Thus, you will acquire theoretical and practical experience with EEG.
9. Make an informed decision as to continue a specialization in M/EEG as part of his/her PhD training.

Inhoud vak
The course aims to provide you with the skills to perform an electrophysiological experiment from beginning to end. This requires highly practical skills in the preparation of subjects and use of highly sensitive/expensive equipment, proficiency in the state-of-the-art signal analysis techniques, and a broad theoretical knowledge of how the human neurophysiology can be studied with the techniques of magneto- and electroencephalography. The generating mechanisms of EEG oscillations and ERPs are treated in detail, as well as the theory behind digital signal processing. This will include frequency decomposition of the EEG (Fourier analysis), time-frequency analysis (wavelet), filtering, and methods to quantify temporal and spatial correlations (i.e., Detrended Fluctuation Analysis and cross-channel synchrony, respectively).

An important component of the course is to teach you how to perform high-density EEG recordings and to analyze these signals with classical as well as more recent non-linear methods. You will work in small groups to record, analyze and present both data on EEG its cognitive/behavioral correlates at the end of the course. The importance of non-stimulus driven brain activity and cognition for brain-related disorders such as
depression, dementia, insomnia or attention deficit and hyperarousal disorder is discussed.

Onderwijsvorm
The study credits amount to 168 hours of study, which are divided approximately as follows:

Activity Hours of study
Lectures 20
Self study (literature and lecture sheets) 40
Lab experiments 8
Data analysis and computer practicals 32
Group discussions (journal club preparation) 4
Plenary discussions 6
Poster preparation 18
Preparation for exams (poster and written) 40
Total 168

Toetsvorm
EEG/ERP data collection under supervision; analysis and presentation of data on research poster (40%). Written examination (60%).

Literatuur

Aanbevolen voorkennis
Brein en Medicijn and/or Humane Neurofysiologie.

Doelgroep
Masters and PhD students with interest in human brain function in general and EEG methodology in particular.
Advanced Molecular Immunology and Cell Biology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470656 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. M. van Egmond</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak

To acquire insight into:
- cellular interactions within the immune system and how molecular diversity is generated to regulate immune responses.
- the various strategies of host immune responses against pathogens, and how pathogens escape proper immune responses.
- the various strategies of the host to positively or negatively affect immune responses during cancer.
- mechanisms by which the immune system regulates either immune activation or tolerance induction.
- the mechanism of cell migration within the immune system.

End terms:

Knowledge: Knowledge: At the end of the course the student is familiar with current knowledge on the (molecular) pathways involved in the induction and regulation of immune responses in health and disease.

Skills:
- The student is capable of applying the acquired knowledge and can interpret scientific literature and scientific hypotheses of each of the topics described above.
- The student is able to formulate a scientific hypothesis and can design a research proposal addressing the hypothesis.
- The student is able to present and discuss the research proposal with peers.

Inhoud vak

Immunology is a rapid growing field of research in medicine and attracts a lot of attention for its contribution in various diseases such as infection diseases, cancer and auto-immunity. The course will give the student the opportunity to enhance the knowledge on the scientific aspects within the field of immunology. Special focus lies on the immunological processes underlying homeostasis control i.e., tolerance induction, immunity, antigen presentation and processes that lead to the development of inflammatory diseases (infection diseases through pathogens), auto-immunity (neuro-immunology) and cancer. Because this is an advanced course in the field of immunology, and will go into depth, particular on molecular details, students should be familiar with basic immunology preferably via a previous basic training course in immunology.
Onderwijsvorm
The course covers immunological processes at the molecular level, and consists of lectures and study groups. In the latter part students will read review articles as well as primary scientific articles on the subjects and discuss in groups opposing views on the molecular immunological processes that occur in the different stages of homeostasis and disease control. State of the art will be discussed of all topics, which will facilitate the study of scientific articles. Additionally, there is time for self study as well as time to design a research proposal, which will be presented. The first three weeks include lectures, study groups, self study and preparation and presentation of the research proposal, whereas the last week mainly covers self study and the exam. In the last week, subjects and possibilities of an internship in the field of immunology will be presented.

Contact hours with teachers and/ or coordinators: 45

Toetsvorm
A written exam at the end of week 4 includes assay ('open') and multiple choice questions (85% of grade). The research proposal has to be presented and accounts for 15% of the grade.

Literatuur
Lectures, reviews and scientific papers are part of the material that covers the exam.

Titles reviews and scientific papers (some changes may occur, final list will be posted on BB)

Reviews

Research articles

Vereiste voorkennis

Bachelor's course immunology: solid knowledge on basic immunology is compulsory before the start of the course.

Aanbevolen voorkennis

It is expected that all students are familiar with Parham, The immune system, 3e ed. Garland Science: Chapter 1-9, and 10.12 t/m 10.20 en 10.24 t/m 10.27; 11.1 t/m 11.6 en 11.8 t/m 11.25.

Doelgroep

Students with a keen interest to study immunological processes that form a basis for a variety of occurrences of diseases. In particular those that cover the interaction between host-pathogen, host–tumor and homeostatic control.

Overige informatie

Study groups and active participation are compulsory. A substitution assignment is required when one or more workshops have not been attended, or when participation is judged as unsatisfactory.

Analysis of Governmental Policy

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470571 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
</tbody>
</table>

Vrije Universiteit Amsterdam - Fac. der Aard- en Levenswetenschappen - M Biomedical Sciences - 2013-2014

30-9-2015 - Pagina 12 van 71
Doel vak
- To acquire critical knowledge regarding different policy models and theories
- To master the correct use of central concepts in political and policy discourses.
- To further deepen your analytic skills with respect to the critical assessment of a complex societal question or dilemma in the health and life science;
- To learn to integrate science-specific knowledge with the knowledge and skills of other disciplines of the social sciences
- To practice skills in data collection and analysis
- To learn to set up valid lines of argumentation;
- To learn to translate research findings into policy recommendations;
- To get experienced in writing a policy advisory report;
- To improve your communication skills;
- To improve your skills in working effectively in a project team, through team building, team analysis and feedback.

Inhoud vak
Governmental policy affects millions of people and is thus object of intensive debate and target of strong societal forces, like political parties, media and interest groups. Being an advisor or policy maker requires a thorough understanding of the dynamics of policy making, as well as from the psychological side as from the more social structures and their influence on a deliberative democracy.

The course contains several lectures on theoretical concepts and models concerning policy analysis. Furthermore you will be challenged, under supervision, to apply and practice these concepts and models in the project assignment. From the very first day, you will be part of a project team of about ten students. You are confronted with a real policy problem from an external commissioning institution (e.g. a non-governmental organization, a Ministry, an advisory council). Within those 4 weeks you will collect data by literature review and interviews and conduct an interdisciplinary analysis on the basis of which you provide an advice. Specific attention is paid to working in a project team and team building. At the end of the course, you prepare an advisory report. On the last day of the course you present the report to the representative of the external institution who commissioned the project. In that presentation your team will highlight the main results of your analysis and defend the recommendations you propose.

Onderwijsvorm
Analysis of Governmental Policy is a fulltime course of four weeks (6 ECTS). The most recent course schedule is to be found on Blackboard. The total study time is 160 hours. Tuition methods include lectures, training workshops, and self-study.

The different elements have the following study time:
- lectures: 15 hours
- project: 147 hours (within the project: 18x 1 hour coach meeting)
- self study: (within the project, defined in the group)
- examination: 2 hours

Please note that attendance to the project meetings is compulsory. Attendance to the lectures is highly recommended. In our experience, relying on self-study alone is insufficient to pass the exam.

Toetsvorm
Written exam (25%) and individual evaluation based on personal performance in the project team (50%), and assessment of various group products (report and presentation (25%)). Exam has to be passed successfully.

Literatuur

Aanbevolen voorkennis
The project integrates the learned lessons from the first compulsory MPA courses: Qualitative & Quantitative Methods.

Doelgroep
Compulsory course within the Masterprogramme Management, Policy Analysis and entrepreneurship for the health and life sciences (MPA) and the Societal differentiation of Health, Life and Natural Sciences Masters programmes.

Overige informatie
The case is policy analysis and advice, but the exercised methods and skills are equally applicable to strategic marketing advice or evaluation studies. The teams will be coached by workgroup leaders.

Business Management in Health and Life Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470584 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. H.J.H.M. Claassen</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. H.J.H.M. Claassen</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To acquire insight in different legal entities in which to organise a company or enterprise
To get acquainted with:
- financial and legal aspects
- patents and alternative valorization methods
- marketing and sales aspects of businesses
To acquire insight in Human Resource Management models
To get acquainted with different models of financing
To learn to think and act in line with economic and sustainability
issues for the company

Inhoud vak
Increasingly, health students will be confronted with a corporate way of thinking in health organisations. To function in such an environment it is critical that students have basic knowledge of fiscal and legal entities and organisational forms of corporate structures (including start-ups). Furthermore, they have to understand what motivates decision makers and financial officers in different companies (also geographical differences). This course comprises a theoretical and a practical part. The theoretical part consists of interactive classes with various experts from the field. Topics that will be dealt with in detail include: intellectual property, portfolio management, finance, risk capital, grants and subsidies, team building and people management, different legal entities, fiscal and legal aspects when starting a new company, SWOT analysis in the life sciences and clinical trials. The practical part consists of bringing the knowledge acquired during the classes into practice in an assignment in which you develop a (personal career) businessplan.

Onderwijsvorm
Lectures: 35h
Assignment: 4h
Work on assignment (self study): 40h
Preparing the exam: 81h

Toetsvorm
Written exam: 50%
Personal Business Plan: 50%
Both have to be passed

Literatuur
Will be announced on Blackboard 1 month before the start of the course

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences.

Overige informatie
Guest lecturers/organisations:
- Robert Al, TU Eindhoven
- Tamar Weenen, VU university
- Esther Pronker, VU university
- Patrick de Boer & Jochem Bosschenbroek, Ttopstart BV
- Bart van Weezenbeek
- Bart Bergstein, Forbion Capital partners
- Michael Mellink & Majorie Soeter, Odgersberndtson
- Marga Janse, innovatif LerenLeren BV
- NL Octrooiencentrum
- Price Waterhouse Coopers
- AsjesBisseling Belastingadviseurs
- And others to be announced

Caput Dilemmas in the Implementation of Public Health Programmes

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470565 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Doel vak
- The student has acquired in-dept insight in organization, management and policy in the field of Public Health in the South, with a specific focus on the implementation of vaccines programmes.
- Has acquired insight in the constraints in the implementation of Public Health programmes i.e. vaccination programmes in the South.
- Has applied the acquired insight in the implementation of results and interpretation and to evaluate the efficacy of vaccines programmes.
- Has assessed constructively and systematically strategies to solve the constraints and to improve the efficacy of vaccination programmes through national and international organization.

Inhoud vak
This caput will increase the student's knowledge in the North-South relation and particularly on the implementation of Public Health Programmes in the South with focus on an international context. Furthermore, the course will give an overall overview of the organization and policy strategies of organizations involved in the implementation of public health programmes which directly is linked with the containment course.

Special attention is given to analyzing the dilemmas and challenges in public health and to generate ideas for future development. The analysis will focus on i) the experiences in working in the field and community based health programmes e.g. vaccination programmes; ii) the constraints and opportunities of the various implementation strategies; iii) methodological aspects of inter disciplinary research; iv) monitoring and evaluation of public health programmes; v) communication strategies to policymakers, professionals and the general public.

Onderwijsvorm
This theoretical course comprises self study and three discussion meetings. After a short introduction the student has to study various scientific articles that are then critically analyzed and discussed in a subsequent meeting.

Toetsvorm
Written of oral exam and individual assessment through evaluation assignments.

Literatuur
Selected chapters and scientific articles.

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences.

Overige informatie
For information and application: anna.van.luijn@falw.vu.nl

Caput Institutionalising Participatory Approaches in the South

| Vakcode | AM_470567 () |
Doel vak
- To develop a detailed understanding of the importance of participation strategies for sustainable development
- To understand the difficulties that have been identified for institutionalising interactive approaches within existing organisations
- To obtain insight into different strategies to institutionalize interactive approaches.
- To acquire knowledge on the learning organisation.

Inhoud vak
During the past three decades participation has become increasingly visible as an issue in development. It is recognized that participation is a key element in poverty eradication and sustainable development. Methodologies to enhance participation are now commonly used in development projects and 'participation' has become a development orthodoxy. However, it is one thing to acknowledge the effectiveness of participatory approaches, but another to apply these approaches consistently over longer periods of time. This requires institutionalisation of these approaches within the organisations concerned, so as to build the necessary capacity. Most organisations are not well adapted to the application of participatory approaches. Some organisational change is therefore likely to be necessary if participatory approaches are to be institutionalised successfully. In this theoretical course you study in depth scientific literature about various theoretical concepts and practical experiences of institutionalisation processes of interactive approaches that were undertaken by organisations in the South.

Onderwijsvorm
This theoretical course comprises self study. After a short introduction you study various scientific articles that are then critically analyzed.

Toetsvorm
Individual assessment though an assignment

Literatuur
Selected scientific articles.

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in health and life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences.

Overige informatie
Self study. Basic knowledge on organisation and management is required.
For more information and application: anna.van.luijn@falw.vu.nl

Caput Protein Structure as Molecular Basis of Disease

| Vakcode | AM_470120 () |
Doel vak
Overview of recent advances in research of molecular disease based on protein structure;

Final attainment level:

The student has insight into the relation between protein structure/(mal-) function;
The student has insight into the relation protein (mal)-function/disease.
the student can screen, evaluate scientific literature and present a structured review recent advances

Inhoud vak
Suggested topics are:
• Antibiotic action
• Antibiotic Resistance
• Cancer/p53
• Anti-Influenza drugs
• Tuberculosis drug targets
• Anti-aids drugs
Feel free to suggest other topics related to protein structure/function, please ask the docent for more information.

Onderwijsvorm
You receive several original publications on a recent topic in protein structure/disease (see above) from the docent. You study these papers and collect more information (data-base search etc.) about research in the field. Finally you can either write up your results in a review-style paper or give an oral presentation.

Toetsvorm
Oral or written presentation (choice)

Literatuur
Literature depends on the topic chosen by the student. Literature search in self-study.

Doelgroep
Masters students Biomolecular Sciences, Biomedical Sciences, Biology, Pharmaceutical Sciences, Medical Natural Sciences

Clinical Aspects of Heart and Circulation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>M_CCLINBIO09 (3120000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
</tbody>
</table>
Doel vak
This course focuses on the basic principles and clinical aspects of normal cardiac and circulatory function and dysfunction and the development of heart failure. Special attention will be given to the biophysical and clinical aspects of imaging.

Inhoud vak
The following topics will be addressed: Cardiac excitation and contraction, physics of heart and circulation, hem rheology and fluid dynamics. Coronary artery disease: ischemic syndromes; Heart failure: Pathophysiology, diagnosis, treatment and prognosis; Hypertension and other risk factors of Coronary Artery Disease: Clinical diagnosis, treatment and complications; Inflammation of the heart: Pericarditis, myocarditis and endocarditis; Mitral & aortic valve disease; Aortic and peripheral vascular disease: Clinical spectrum, diagnosis and treatment; Pulmonary hypertension; Clinical recognition of supra- and ventricular arrhythmias; Cardiovascular positron emission tomography, MRI, Ultrasound; Implants: pacemakers/defibrillators; Cardiac Resynchronization Therapy (CRT).

Onderwijsvorm
Lectures, working groups, assignments

Toetsvorm
Written exam and assignments

Literatuur
Book: Cardiology, Crawford-Di Marco-Paulus 3rd Ed (recommended) syllabus including relevant articles.

Intekenprocedure
Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams.

Clinical development and clinical trials
Doel vak

To acquire knowledge and insight into the role and objectives of drug and clinical development process

To acquire knowledge and insight into the clinical pharmacology in drug development, drug interactions, pharmacodynamic and metabolic interactions

To acquire knowledge and insight into clinical study methodology

To acquire knowledge and skills into the regulatory principles

To acquire knowledge of ICH-GCP and quality

To acquire knowledge and insight into clinical trial coordination

To acquire knowledge and skills into the data management and statistics.

To acquire insight into the ethical aspects

To acquire insight into actual use of clinical trials in R&D strategies

To learn to design a clinical study

To acquire insight into the different epidemiologic study designs

To acquire knowledge and skills into how exposure and disease in a population can be measured and how the relationships between them can be assessed (using SPSS)

To acquire knowledge and skills into interpreting and presenting the results of an epidemiologic study

Inhoud vak

The need for rigorous evaluation of components of health care is increasingly recognised worldwide. An important type of evaluation is the clinical trial. The most commonly performed clinical trials evaluate new drugs, medical devices, biologics, or other interventions on patients in strictly scientifically controlled settings, and are required for regulatory authority approval of new therapies. This course aims to provide students with a theoretical and practical understanding of the issues involved in the design, conduct, analysis and interpretation of clinical trials of health interventions. Furthermore classes are provided on which the actual use of clinical trials in day to day R&D strategies within industry and universities is addressed in detail. Classes include: ‘Life Cycle of a Clinical Trial’, ‘Clinical Trial Methodology’, ‘ICH-GCP Principles’, ‘The Ethics Committee’, ‘Safety Considerations in Clinical Trials’, ‘Quality Control & Quality Assurance’, ‘Compliance, Misconduct & Fraud’.

An additional week of basic epidemiology will help you to complement the knowledge obtained so far in the course with an understanding of the principles of other types of study designs (cross-sectional, longitudinal, case-control). Issues concerning exposure and disease measurement and exposure-disease relationships will be discussed in detail, and examples will be provided. Together with your colleagues, you will learn how to apply this knowledge first by hand (during the lectures), then to an epidemiologic database (during the computer-based sessions) and how to interpret the results critically.

Onderwijsvorm

Lectures: 25h

(Computer) workgroup: 32h

Preparing the exam: 2h

Toetsvorm

Written exam: 100%
Literatuur
Will be announced on Blackboard 1 month before the start of the course

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences.

Overige informatie
Guest lecturers/organisations:
- Eric Klaver
- DOCS
- Others to be announced

Clinical Immunology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470655 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. T. van der Pouw Kraan</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To understand immunopathogenic processes that play a role in the onset and chronicity of three immunological diseases, that cover allergy, auto-immunity and infection diseases, such as celiac disease, multiple sclerosis (MS) and AIDS.
To acquire insight in both clinical parameters as well as basic scientific principles that play a role in these diseases.
To acquire insights in the currently used treatments to reduce disease activity.
To understand the mechanism by which the immune system regulates these diseases, and how one could modify immune response to the benefit of the patient.
To apply the acquired knowledge of scientific literature and scientific hypotheses of each of the topics described above by presenting it to their fellow students.

Inhoud vak
During the course three immunological diseases will be discussed: celiac disease, multiple sclerosis (MS) and AIDS, each for the duration of a week. The week will start with a clinical introduction into the features of the disease by a practicing clinician at the VUmc, who illustrates the symptoms in patients that have these diseases. Based on this introduction questions will be formulated and within small groups students will formulate answers through literature search. During the week more lectures will be given on the immunological mechanisms that play a role during these complex diseases. These lectures highlight
molecular immunological tools used, as well as novel strategies such as
genomics-proteomics profiling of the disease, the use of animal models
that mimic disease, as well as vaccine development and treatment
methodology of the diseases. Through self study and searching
literature students will try to answer the questions via a written
assay of 2-3 pages and an oral presentation for their fellow students,
which is scheduled at Friday.

Onderwijsvorm
The course covers immunological processes as well as clinical parameters
both at the molecular as well as the cellular level and will discuss
both innate and adaptive immune responses. The course consists of
lectures, selfstudy, practica and workshops. Practical works and
workshops both are compulsory. In the latter part students will present
their answers on questions based on literature searching and reading of
reviews as well as the lectures. For the duration of one week one
disease will be discussed, whereas the last week covers mainly selfstudy
and the exam.

Contact hours
19 hours lectures
15 hours workgroups and presentations

Toetsvorm
Lectures and workshops are compulsory and form part of the material that
covers the exam. Active participation in discussion is part of the
appraisal (presentations of answers to assay questions account for 10%
of the exam). Written exam at the end of week 4 include 15 essay
questions (90%).

Literatuur
The immune system by P. Parham 3th edition, Immunobiology by Janeway 7th
edition, Case Studies in Immunology: A Clinical Companion (by Geha 6th
dition), including a handout which contains recent reviews specialized
on the immunological diseases discussed.

Vereiste voorkennis
Bachelors course Immunologie

Doelgroep
MSc students with a keen interest to study immunological processes
within the complexity of diseases such as allergy, multiple sclerosis
and AIDS.

Overige informatie
External lecturers:
Dr. J. Borghans (UMCU)
Prof. dr. F. Koning (LUMC)
Dr. J. Samsom (ErasmusMC)
Dr. W.A. Paxton (AMC)
Prof. dr. T.B.H. Geijtenbeek (AMC)

Communication, Organization and Management

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470572 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Doel vak
To get acquainted with theories on organisational behaviour
To obtain a deeper understanding of communication from the
perspective of sharing and influencing results
To acquire knowledge on organisational structures and designs
To get acquainted with important theories on organisational
transitions and change management
To acquire insight into different management practices in the health
and life sciences sector
To gain insight in leadership and interpersonal behaviour
To obtain insight in methods for motivation and conflict management
To improve communication skills
To practise analytical and advisory skills

Inhoud vak
Organisations in the health and life science sector are changing fast, a
phenomenon driven by newly emerging technologies and increasing societal
complexity. A growing number of students with a beta degree will hold
professional and managerial functions in these organisations. During
this course students will learn how to be effective performers within
these environments, both individually and in teams. This requires an
understanding of the macro aspects of organisational behaviour,
including designing organisations, managerial skills and ways of
strategic thinking. Several speakers conduct lecturers on aspects as
motivation, managing interpersonal behaviour, leadership, communication
and developing and changing organisations. The speakers explain theories
from literature and relate them to their practical experiences. In
addition, the students interview managers in health organisations and
analyse these interviews using the newly acquired theoretical concepts.
Also, practical cases of health care companies will be analysed and
discussed, resulting in advisory reports for management. With the other
students you discuss your experiences and a coach helps you relate the
experiences to theory.

Onderwijsvorm
Lectures (approximately 22 hours), response lectures (4 hours), self
study, training workshops (12 hours), self-study and writing project
assignment (approximately 120 hours).

Toetsvorm
Written exam (60%:) and assessment of the interviews, case study
analysis, and reports (40%). Grades of both parts must at least be 6 or
higher.

Literatuur
To be announced on Blackboard

Doelgroep
Compulsory course within the Master programme Management, Policy Analysis and Entrepreneurship for the Health and Life Sciences (MPA) and the Societal differentiation of Health, Life and Natural Sciences Masters programmes

Overige informatie
Attendance to training, workshops, interviews and discussions is indispensable

Complex Trait Genetics

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470733 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. D.I. Boomsma</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. D.I. Boomsma</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
Provide the theoretical background into population and biometrical genetics so that students gain an understanding of the way the genome contributes to human variation.

Inhoud vak
Quantitative genetics is concerned with the inheritance of those differences between individuals that are of degree rather than of kind (quantitative rather than qualitative). Such differences are seen for most complex traits (e.g. depression, cognitive abilities or attention problems). This course aims to provide an understanding of the inheritance of such quantitative differences in behavior, behavioral disorders, endophenotypes (e.g. blood pressure or brain volumes) underlying disease traits (e.g. hypertension or schizophrenia). Quantitative differences, as far as they are inherited, depend on genes with on average small effects and are usually influenced by gene differences at many loci. Consequently these genes cannot be identified by Mendelian segregation ratios (though they are subject to the laws of Mendelian transmission). The methods of quantitative genetics differ in two aspects from those employed in Mendelian genetics: since single progenies are uninformative the unit of study is the population; and the nature of quantitative differences requires the measurement (and not just the classification) of individuals. The extension of Mendelian genetics into quantitative genetics will be made in two stages: the genetic properties of populations (population genetics) and the inheritance of measurements (biometrical genetics). Quantitative genetics is now merging with molecular genetics and the last part of this course will be devoted to methods for the localization and characterization of genes causing quantitative variation, focusing on recent developments using genome wide association (GWA) analysis.

Onderwijsvorm
Combined lectures and work groups, twice 4 hours per week
Toetsvorm
Course grades will be based on 3 assignments; for ~40%, 20% and 40% of grades
1) Read papers (references provided) and write a short essay about current issues / state-of-the-art in human genetics (focus on genetic association studies). Select one empirical paper; (try to) read it. Indicate what is unclear to you. At the end of this course you will asked to review your own essay and then indicate what you now understand better than before.
2) Problems from the book to be assigned after each lecture (about 4 or 5) as home work before the next class. Students will be asked to present the solutions to the problems in class and part of grading depends on how well solutions are presented.
3) Final assignment: oral presentations on a research topic; topics can be chosen from a list of papers or book chapters.

Literatuur

NB final list of papers may change when new papers come out

4 papers / commentaries from the New England J of Medicine 23 april, 2009:
J. Hardy and A. Singleton: Current Concepts: Genomewide Association Studies and Human Disease
D. B. Goldstein: Common Genetic Variation and Human Traits
J. N. Hirschhorn: Genomewide Association Studies — Illuminating Biologic Pathways
P. Kraft and D. J. Hunter: Genetic Risk Prediction — Are We There Yet?

Recent review papers

Recent gene finding papers
* Scott RA., Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 44(9):991-1005, 2012

Vereiste voorkennis
General knowledge of human and quantitative genetics. When in doubt, ask the course coordinator.

Aanbevolen voorkennis
General knowledge of human and quantitative genetics. When in doubt, ask the course coordinator.
Doelgroep
Students, phd-students, postdocs who are interested in the theoretical basis of research on the genetic origin of complex features of man.

Overige informatie
There will be 2 guest lectures on actual fields like epi-genetics. Furthermore, it is expected from students that they will join a couple of high-level meeting, such as from BBRMI-NL.

Containment Strategies of Infectious Diseases in Global Context

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470127 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.F. van den Bosch</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. D.R. Essink, prof. dr. P.R. Klatser, prof. dr. J.F. van den Bosch</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
The student

- Has acquired in-depth theoretical and practical knowledge in relation to health intervention strategies for infectious diseases.
- Has acquired insights in various infectious diseases and characteristics in relation to containment strategies
- Has acquired insight into the role of international institutions, such as the WHO, governmental advisory bodies, relevant professionals, executing institutions, NGOs and communities in designing and carrying out health interventions.
- Understands which barriers are important when implementing containment strategies of infectious diseases, with a focus on vaccination programmes
- Has acquired insight in theoretical concepts and methods to interpret results, evaluations and the effectiveness of programs
- Has learned to develop and apply risk assessment, risk management, and risk communication methods
- Has learned and practiced interdisciplinary methods and techniques to plan health interventions at community level in an interactive way.

Inhoud vak
This course covers developments in intervention strategies used to address health needs in a global context. Containment strategies of infectious diseases, in particular vaccination programmes, alert systems and intervention strategies, provide specific areas of attention. The containment strategies to be discussed include programmes for known
infections (including vaccination strategies and
in case of absence of a vaccine, diagnosis and treatment strategies)
and emerging infections (including isolation, prevention and
communication strategies).
The student learns how to analyze bottlenecks and opportunities of the
various strategies, how to interpret the results and to evaluate the
implementation of programmes.
In addition, the student will take part in a group assignment on how to
design containment strategies at community level in an interactive way,
for e.g. tuberculosis, polio, rabies, malaria, HIV/AIDS, etc. A
presentation and writing of an essay will be part of the group
assignment.

Onderwijsvorm
Lectures, group assignment, presentation, essay, self-study.
Group assignment attendance is compulsory.
Contact hours: lectures 34 hrs, group work 8 hrs.
Self-study approx. 80 hrs.

Toetsvorm
Individual exam (60%) and group assignment presentation and essay (40%).
Both parts must at least be sufficient (6 or higher)

Literatuur
R. Webber, 2009. Communicable Disease Epidemiology and Control. 3rd

Lecturers may make further readings available on Blackboard.

Vereiste voorkennis
Basic knowledge about microbiology and immunology.

Aanbevolen voorkennis
Basic knowledge about infectious diseases

Doelgroep
Compulsory course within the Master differentiation International Public
Health; optional course for students in other differentiations of the
Masters Health Sciences, Biomedical Sciences, and Management, Policy
Analysis and Entrepreneurship in Health and Life Sciences. Students from
other backgrounds, please contact our secretariat for further
information at secretariaat.athena@falw.vu.nl

Overige informatie
Guest lecturers:
Dr. Jim van Steenbergen (RIVM/LUMC)
Dr. Peter Gondrie (KNCV)
Dr. Richard Anthony (Royal Tropical Institute)
Dr. Merel Langelaar (Inspectorate Public Health)
Prof. dr. Maarten Postma (RUG)
Dr. Kitty Maassen (RIVM)
Dr. Elena Pinelli (RIVM)
Prof. dr. Robert Sauerwein (UMC Nijmegen)
Prof. dr. Cees Hamelink (VU)
Prof. dr. Ab Osterhaus (EMC Rotterdam)

Disability and Development
Doel vak

• To develop an understanding of disability and the issues faced by people with disabilities
• To develop knowledge and skills for disability research, policy development and management related to disability, rehabilitation and development
• To acquire insight into the epidemiology of disability, with separate attention for important determinants like gender, poverty and HIV/AIDS
• To learn how to use relevant models of disability and the conceptual framework of the International Classification of Functioning, Disability and Health (ICF)
• To understand the importance of human rights in relation to disability and to learn to use the UN Convention for the Rights of Persons with Disabilities for advocacy and other rights-based interventions
• To acquire skills and knowledge in measurement and research methods relevant to disability
• To understand the importance of inter-sectoral collaboration
• To gain insight in participatory approaches

Inhoud vak

The Disability and Development (D&D) course focuses on a broad range of issues related to disability and rehabilitation in the context of development. This means that the focus is on people with disabilities in low and middle-income countries. Disability affects an estimated 1 billion people worldwide, the majority of whom live in low and middle-income countries. The large majority are poor and have no access to rehabilitation services; neither are facilities in place to allow them to be included in the mainstream of society.

To date, very few services and programmes are available to address these needs. The realisation that the Millennium Development Goals cannot be met without addressing the needs of people with disability has brought a new impetus to the field of disability and development. Another major recent development was the adoption of the UN Convention on the Rights of Persons with Disabilities in December 2006. It is expected that there will be a substantial increase in demand for training of a large variety of professionals (e.g. researchers, managers, architects, lawyers, health professionals) with formal training and qualifications in the field of disability-inclusive development.

This rapidly increasing interest in disability, as a development and human rights issue, means that this emerging field of study will rapidly gain in importance and should become part of any serious higher education programme in social and development studies and in
international public health. The course will cover essential knowledge and skills in this subject.

The 4-week course programme will include the following subjects:
• Disability models and stereotypes,
• Frequencies and distribution of disability,
• Experience of having a disability,
• ICF conceptual framework,
• Disability rights, including the UN Convention on the Rights of Persons with Disabilities,
• Culture and disability,
• Determinants of disability, including stigma and discrimination, poverty, gender and HIV/AIDS,
• Measurement of disability,
• Disability-relevant research methods, including survey methods, examples of disability research
• An introduction to community-based rehabilitation.

Onderwijsvorm
Problem-based learning supported by lectures and an article writing assignment
The programme comprises 168 study hours, divided as follows:
• Lectures: 36
• Tutorial groups: 18
• Other events: 12
• Self-study: 102

Toetsvorm
Participation in tutorial groups: 10%
Take-home examination, submitted electronically: 60%
Scientific article: 30%

Literatuur
See e-reader

Vereiste voorkennis
Bachelor-level education; any subject

Doelgroep
The Disability & Development module is an optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life Sciences (MPA), International Public Health and Biomedical Sciences; external students from low and middle-income countries are strongly encouraged to apply. We encourage the participation of students with disabilities, especially from low and middle-income countries.

Overige informatie
Jacqueline Kool, MA
Lydia la Rivière-Zijdel, MA

Entrepreneurship in Health and Life Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470575 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>
Doel vak
Students obtain knowledge about and insight in the relevance of entrepreneurship and innovation for their own discipline. Students learn about the processes which are involved in the recognition and exploitation of opportunities, about creating economic and social value and about the nature and role of networks. In addition students gain knowledge of different entrepreneurial processes and the importance of valorisation of (bio)medical findings and business ideas for a knowledge-based economy.

Learning objectives
- Become familiar with an innovation outlook on entrepreneurship.
- Become aware that value-adding opportunities not only contain financial aspects but also social and ecological aspects (sustainable entrepreneurship).
- Gain the ability to write a feasibility plan on how to bring an innovation to the market.
- Obtain knowledge about and insight in the relevance of entrepreneurship and innovation for science disciplines.
- Learn about the processes which are involved in the recognition and exploitation of opportunities, about creating economic and social value and about the nature and role of networks.
- Gain knowledge of different entrepreneurial processes and the importance of valorisation of (bio)medical findings and business ideas for a knowledge-based economy.

Inhoud vak
This course consists of two tracks: a theoretical track and a practical track. These two tracks run simultaneously. In the first track you learn about entrepreneurship. Answers are found on questions such as: What is entrepreneurship? What defines an entrepreneur? What are entrepreneurial opportunities? What is the role of innovation in entrepreneurship? What is corporate social responsibility (CSR)? How can we judge the feasibility of entrepreneurial ambitions? Simultaneously you work on an assignment (second track). In the first week of this course you search for an innovation in your own discipline (product, service, process etc). Your choice must be approved by the lecturers. The first part of the assignment consists of a description of the innovation which you have chosen. Subsequently, you make a SWOT-analysis and a network analysis of the innovation. Also a paragraph on CSR aspect should be added. The final part of the assignment is your own feasibility study: how would you valorize the innovation to the market?

Onderwijsvorm
Lectures, personal meetings. Each week scientific lectures are given (on entrepreneurship, SWOT-analysis, innovation, CSR etc). These lectures are both the basis for the exam and for the assignment. Each week the student has a short meeting with his / her supervisor, in order to discuss the progress of his/her assignment.

Schedule and study time
The total study time is 160 hours.
Tuition methods include lectures, consultancies and self-study. The different elements have the following study time:
- lectures 18 hours
- consultancies 8 hours
- writing feasibility plan 65 hours
- self study 65 hours
- examination 4 hours

Toetsvorm
You conduct a written exam and an assignment. Both the exam and the assignment determine 50% of the grade. The exam and the assignment must be of sufficient quality.

Literatuur
To be announced on Blackboard

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life sciences (MPA), M-differentiation of the Health, Life & Natural Sciences, Biology, Biomedical Sciences.

Overige informatie
Attendance is compulsory. Prior knowledge: Business Management in Health and Life sciences. For information and application: anna.van.luijn@falw.vu.nl

Ethics in Life Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470707 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 3</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.T. de Cock Buning</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. J.T. de Cock Buning, dr. J.F.H. Kupper</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
To provide a toolbox of ethical instruments to analyze properly moral problems related (to one's own) research in the life sciences
• To acquire conceptual knowledge of the central concepts in applied philosophy and professional ethics
• To challenge an ethical reflection on one owns life science specialization and to open it for an impartial and constructive discussion
• To exercise a team based project to enter prepare and execute a moral dialogue
• To acquire the necessary skills to handle ethical issues in an accountable manner, as a professional academic beyond one's own inclinations and prejudgments

Inhoud vak
Researchers in life sciences generate the knowledge that builds the future of our society. Therefore, professional academics should be
accountable for their decisions, experimental designs and presentation of results. In this short course, the principles of justification will be illustrated with cases of technology ethics and medical ethics. The way an ethical review committee on animal research works, is simulated by a role play exercise on an actual research protocol. Finally, as a small group training project, an ethical dialogue is prepared and executed together with another team.

Onderwijsvorm
Ethics in the Life Sciences is a fulltime course of four weeks (3 ECTS). The total study time is 80 hours. The different elements have the following study time:
• Lectures: 13 hours
• Work groups: 17 hours
• Group assignment: 24 hours
• Exam: 2 hour
• Presentation : 4 hours
• Self working (reading in the first week) : 20 hours
Please note that attendance to the work group meetings is compulsory. Attendance to the lectures is highly recommended. In our experience, relying on self-study alone is insufficient to apply the theory of the lectures in the assignments of the workgroups, and to pass the exam.

Toetsvorm
• Degree of intellectual participation in the workgroups (10%)
• exam (50%) has to be passed
• written and verbal execution of the ethical dialogue (40%)

Literatuur
Available on Blackboard

Vereiste voorkennis
Bsc Biology, Biomedical Sciences, Psychology with profile Biological Psychology or Neuropsychology

Doelgroep
Compulsory course in all FALW Master programmes, except Health Sciences and Neuro Sciences

Overige informatie
Lectures in English, part of the workgroups are in Dutch. All presentations and plenary discussions in English. Attendance is compulsory.

Experimental and clinical neuroendocrinology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470700 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. C.B. Lambalk</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Practicum</td>
</tr>
</tbody>
</table>
Doel vak
The aim of the course is to provide the students not only with a solid basis in the fundamentals of neuroendocrinology, but also with knowledge of recent developments and current research in this field of clinical neurosciences.

Inhoud vak
The course includes an understanding of structure and function of the hypothalamo-pituitary axis in relation to growth, stress, reproduction as well as to autonomic-endocrine and immune-endocrine interactions. Diseases of the hypothalamus and pituitary will be discussed, with special emphasis on central regulation of growth, puberty, reproduction, obesity and stress, sexual orientation and gender identity, taking both an experimental and clinical point of view. A VICI scholar will lecture on the role of pheromones in understanding how males and females respond differently to social odours - possibly the key to understanding the neural basis of sexual orientation and preference.

Onderwijsvorm
Lectures 24 hrs
Outpatient clinics 6 hrs
Research tutorials 10 hrs (appr)

Toetsvorm
Written examination; open questions.

Literatuur

Vereiste voorkennis
BSc Biology, BSc Medical Biology, BA Biological Psychology, BA Neuropsychology

Overige informatie
For further information, please contact mw. M. Evers (M.Evers@vumc.nl)

Functional Brain Imaging

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470715 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. P.J.W. Pouwels</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Computerpracticum, Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To learn about the most important brain imaging techniques, the physics principles on which they are based and practical applications in
research and patient care. To develop a critical and scientific attitude towards imaging techniques.

Final attainment level:
- To understand the basic principles and to discuss possibilities and limitations, advantages and disadvantages of brain imaging techniques
- To obtain knowledge of use of techniques in neuroscientific and clinical research
- To be able to propose an imaging experiment (acquisition methods and analysis) for a neuroscientific question

Inhoud vak
Three main approaches of brain imaging (to study structure and function) can be distinguished: neurophysiological techniques (EEG, MEG), neuroradiological techniques (MRI, fMRI, MRS) and techniques which involve the use of radio active ligands (SPECT, PET). Quite some emphasis on physics and mathematics will be given during the lectures. This is necessary to provide sufficient background knowledge, such that the students become aware of the advantages and disadvantages, the possibilities and limitations of the techniques. Applications of the techniques will be given in relation to ongoing research at the Neuroscience Campus Amsterdam.

Onderwijsvorm
The basic principles and several applications of all techniques will be presented in a series of lectures mainly scheduled during the first 3 weeks almost full-time. Small groups will discuss particular aspects in more detail. During the course, visits to the departments involved in imaging will be arranged. Hands-on experience of analysis methods is provided in computer practicals.

approx. 70 hours of contact time during the whole course.

Toetsvorm
Individual written exam (50% of final mark)
Team presentation about a functional brain imaging experiment concerning a neurological disorder / neuroscientific problem. (50% of final mark)

Literatuur
- Devlin H et al: Introduction to fMRI. http://www.fmrib.ox.ac.uk/education/fmri/fmri/introduction-to-fmri
- Lammertsma AA: Radioligand studies: imaging and quantitative
Gene Hunting

Doel vak
To provide students with a solid base of molecular genetic approaches to identify the responsible genes for human traits and disorders.

End terms:
- students can run a genome wide association by themselves
- students can critically read GWAS studies
- students have good insight into molecular approaches that can be used for functional genetic studies
- students are aware of the differences between Mendelian and complex traits and the consequences for statistical and functional analyses

Inhoud vak
The course will address the various aspects of positional cloning approaches (gene hunting) and functional assays for identified mutations and will address the following topics:
- Genome variation
- Molecular finemapping (tools and methods) SNPs, STRs
- Copy number variation
- From statistics to biology
- Mutation analysis
- Genome browsers
- Epigenetics
- Biological effects of mutations
- Functional assays

Onderwijsvorm
Lectures and discussion (25 hrs), computer practicals (20 hrs), and self study (24-40 hrs)
Lecture and computer practicals each represent 50% of the course.

Toetsvorm
Weekly reports (30%), presentation (30%) and assignments (40%)

Literatuur
Human Molecular Genetics 4, Strachan and Read + handouts for computer practical

Vereiste voorkennis
Master course Behavior Genetics

Aanbevolen voorkennis
Statistics, genetics

Doelgroep
Master students

Overige informatie
(Minimum # students: 25)

Genomic Data Analysis

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1008 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. P. van Nierop</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. P. van Nierop, dr. Z. Bochdanovits</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To provide students with basic knowledge and skills to independently design, execute and explain the results of data analysis in the context of a genomics/proteomics experiment.

FINAL ATTAINMENT LEVELS :
(i) Graduated students have acquired the necessary research skills to plan, execute, and reflect on elementary steps in data processing, statistical evaluation, and representation of results of a genomics experiment;
(ii) students have knowledge of the principles behind analysis of protein and DNA sequence information;
(iii) students have basic programming skills in the R programming language

Inhoud vak
The course will address various aspects of bioinformatics analysis of the genome and will address the following topics:
- Gene expression analysis: this section of the course deals with stages in data analysis that are associated with large scale transcriptomics data (microarray experiment). Consecutive stages of data analysis, i.e., experimental design (as far as relevant for data analysis), data preprocessing, normalization, statistical evaluation, and the identification of relevant gene groups, are discussed. At each stage specific characteristics of large scale genomics experiments that impair a straightforward interpretation of results are highlighted and alternative analysis strategies are discussed. The lectures are accompanied by computer practicals where theory is put into practice and the basic practical skills are acquired for genomics data analysis and representation in the R programming language. The theoretical and practical skills are applicable to any 'omics' (genomics, proteomics, metabolomics) experiment.
- Analysis of biological sequences: this section of the course teaches the fundamentals of mining of information on DNA and protein sequences relevant for molecular biology research. Special attention is given to the principle of molecular evolution and the translation thereof into algorithms for sequence analysis. Topics of sequence alignment, sequence database searching, and phylogenetic analysis will be discussed, and are accompanied by computer practicals that provide insight into sequence analysis algorithms as well as familiarize students with popular sequence analysis tools such as BLAST and ClustalW.

Onderwijsvorm
Lectures (20 hr), practicals (15 hr)

Toetsvorm
Written exam(60%), microarray data analysis assignment (20%), sequence analysis assignment (20%)

Literatuur

Vereiste voorkennis
Bachelor Biology, Biomedical Sciences, Psychology with profile Biological Psychology or Neuropsychology, Neurogenomics course.

Doelgroep
The course provides essential body of knowledge and skills to students that pursue a career in Life Sciences at the molecular level (genomics, proteomics, metabolomics).

Overige informatie
For further information, please contact dr. P. van Nierop (p.van.nierop@vu.nl)
Health Geography

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470094 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>drs. M.A. Molendijk</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. H.J. Scholten</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak

After the course the student can answer basic questions concerning specific health geography issues, by using geographical data and analysis (GIS) techniques. The student:
- has a critical appreciation of spatial perspectives in the geography of health;
- has practical experience in the use of GIS software and analysis tools to solve the spatial component health geography issues;
- can document and communicate the use of geodata and spatial procedures in written form and using flowcharts and meaningful clear maps.

Inhoud vak

This course covers the spatial dimension of health issues and teaches methodology and use of an essential tool for health geographers: Geographical Information Systems (GIS).

Location and time determine the variation in the social and environmental factors that are essential for the spatial development, distribution, treatment and prevention of diseases and health problems. Unsurprising, since the late nineties the use of geodata and GIS has become more and more standard in the different health disciplines that study the aforementioned spatial relationships, such as environmental health and disease ecology. Or as Cromley and MacLafferty (2011) put it: "GIS, as a means of exploring health problems and finding ways to address them, has taken its place in the conceptual and methodological foundations of public health". Next to GIS applications in disease surveillance and risk analysis, GIS is also increasingly used in applications for health access and planning and for community health profiling.

To apply geographically based GIS tools and methods to the study of health, disease, and health care, in a sound and responsible way, requires expert knowledge and skills from multiple disciplines. This course offers the necessary basic skills and knowledge concerning the geographic data, tools and methods from the geographic disciplines. Your health studies should offer most of the necessary skills and knowledge from the health related disciplines. This implies that this course will start as a basic GIS course, but with case studies and geodata relevant for your discipline. As the course proceeds the background disciplines will merge more and more together into the discipline of health geography, maintaining however a strong focus on geodata, GIS and spatial analysis.
Onderwijsvorm
Lectures and supervised computer labs. The latter are core of the course. Each week consists of 14 contact hours and 26 self study hours.

Toetsvorm
The final mark of this course is composed of two parts:
1) Exam and Self Assessed Exercises (SAE). The exam and SAE’s make up 80% of the end mark. For the exam, the maximum score you can obtain is 8 points; handing in the SAE’s (1 – 8) in time and complete counts for 2 points.
2) A report reflecting on the practical GIS case study using the PPDAC format (Problem, Plan, Data, Analysis, Conclusion) makes up 20% of the end mark.
The exam is held in a computer room and consists of questions that test your practical skills in using (Arc)GIS as well as questions that test your understanding of spatial perspectives in health (course lectures and literature).

Literatuur

Vereiste voorkennis
Proven affinity with Information Technology

Doelgroep
MSc students with basic training in health sciences and/or nutrition.
The course is a component of the differentiation programme Infectious diseases and Public Health in the MSc Health Science and of the differentiation programme Infectious diseases in the MSc Biomedical Sciences.

Overige informatie
Guest lectures from Royal Tropical Institute (Mirjam Bakker) and "Health Geography" alumni.

Health, Globalisation and Human Rights

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470818 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. C.W.M. Dedding</td>
</tr>
</tbody>
</table>
Doel vak
To acquire knowledge and understanding of the relationship between
global public health issues and the global protection of human rights
To analyse how violations of human rights affect health and well-being
To learn methods of human rights assessment in relation to
innovations in health technology
To acquire insights into the cultural dimensions of human rights
values in relation to public health

Inhoud vak
This course focuses on the human rights issues that are raised around
the globe in connection with public health concerns. The course
introduces the students to the effects of globalization on health
issues, to the relevant UN human rights instruments on health and to
the mechanisms to promote and protect these rights. Attention is given
to a wide range of human rights topics in which health and well being
play a crucial role. Examples are situations of armed conflict,
reproductive rights, migration and refugee issues and childrens
rights. Within the context of current globalisation processes the
importance of local cultural insights into the human rights & public
health interaction will be discussed. During the course students will
prepare and participate in a simulation on a human rights assessment of
innovations in health technology and discuss relevant scientific
literature in study groups. In the exam students will show their
creative problem-solving skills applying them to human rights dilemmas
in public health.

Onderwijsvorm
Contact hours

Lectures: 33 hours
Work groups: 10 hours
Group project, simulation and exam: 8 hours

Self study and preparing: remaining hours

Toetsvorm
Group project (10%), Simulation (20%), exam (70%). All parts need to be
passed (6.0)

Literatuur
To be announced at the start of the first work group/lecture

Doelgroep
Optional course for students in all differentiations of the Masters
Health Sciences, Biomedical Sciences and Management, Policy Analysis
and Entrepreneurship in Health and Life Sciences.

Overige informatie
Guest lectures and guest organisations (under reservation):

Christine Dedding (Children and rights)
Fiona Budge (Culture and Health)
History of Life Sciences

Vakcode	AM 471017
Periode | Ac. Jaar (september), Periode 3
Credits | 3.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Coördinator | prof. dr. I.H. Stamhuis
Docent(en) | prof. dr. I.H. Stamhuis, prof. dr. F.H. van Lunteren
Lesmethode(n) | Hoorcollege, Werkgroep, Werkcollege

Doel vak
We will address several of the more conspicuous changes in the life sciences during the last two centuries, such as the emergence of modern genetics, the social basis of Darwin’s theory of evolution, the "molecularization" of the life sciences, and the rise and fall of the eugenic movement. Three additional themes running through the course are the nature of scientific discovery, the disciplinary organization of science and the interaction between science and society.

Inhoud vak
We will address several of the more conspicuous changes in the life sciences during the last two centuries, such as the emergence of modern genetics, the social basis of Darwin’s theory of evolution, the "molecularization" of the life sciences, the rise and fall of the eugenic movement and the complex relationship between ecology and environmentalism. Three additional themes running through the course are the nature of scientific discovery, the disciplinary organization of science and the interaction between science and society.

Onderwijsvorm
Plenary lectures. Group assignments involving presentations. Course information, course lectures and readings, assignments and instructions will be posted on Blackboard.

Toetsvorm
The final grade is the weighted average of the grades of the group presentation (40%) and the individual written exam (60%) with the condition that to pass the exam, the final grade must be at least 6 AND the grades of both parts must be at least 5.

Literatuur
Articles

Overige informatie
N.B. 2012 - 2013 is the last possibility to follow History of Life Sciences.
Immunity and Disease

Doel vak
- Expanding knowledge obtained during the introductory course on immunology, focusing on several immunological disease processes including infectious disease, immunodeficiency, autoimmunity, graft rejection and hypersensitivity.
- Trainings in ways to study primary and secondary immunological literature on selected immune disorders.
- Introduction to critical research questions regarding immunological aspects of various diseases.

Finally, the student should be able to:
- Explain in depth how and to which extent immune defence mechanisms normally operate, and are distributed in cancer and a broad variety of clinically relevant disease processes.
- Point out which diagnostic methodologies provide the information, which is most relevant to the selection of therapeutic interventions.
- Summarize pros and cons of preventive and therapeutic measures.

Inhoud vak
Parham’s ‘The Immune System’ (3rd ed.), which is also used for the introductory course. After repetition of the fundamentals of chapters 1 to 9, the chapters 10 – 16 focus on infectious diseases, immunodeficiencies, allergies and hypersensitivity disorders, autoimmune diseases, graft rejection, tumor immunology, and therapeutic and technical issues, respectively. Additional course content (literature and lectures on research models) will also be placed on Blackboard.

Onderwijsvorm
Independent study (approx. 120 hrs), complemented with training sessions.
First, during the initial lecture knowledge on the first 9 chapters will be refreshed and rehearsed. Subsequently, the chapters 10 -16 of Parham (2nd ed.) and research models in immunity and disease will be lectured and discussed. Moreover, small-scale working group sessions are scheduled to provide highly interactive discussions on recent literature selected in order to highlight cutting edge research questions (2 x 3 hours).

Toetsvorm
The course will be closed off with a written assignment based on answering essay questions (at the end of October). The re-exam takes place yearly.
Literatuur
The immune system, Parham, 3rd edition (ISBN 9780815341468). Complementary literature on selected topics will be provided on Blackboard.

Doelgroep
This course is compulsory for the Differentiation Immunology in the General Master Biomedical Sciences FALW. Given the broad relevance of immunology in life sciences this course also provides excellent opportunities as voluntary choice for other differentiations within both FALW master program BMW and other choices in FALW as well as voluntary choice in VUmc master programs (master oncology/master cardiovascular).

International Comparative Analyses of Health Care Systems

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470820 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 3</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. D.R. Essink</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
• To understand and recognize the different components of a health system and different models of health system organization using various frameworks for health system analysis
• To understand and analyze outcomes of health systems with respect to equity, fair financial contribution and health status
• To understand the complex adaptive nature of health systems and its constitution
• To understand different methods in analyzing and comparing health systems: health system performance assessment (benchmarking), case study analysis, cost effectiveness analysis
• To understand the underlying reasons for health system reform and to recognize different health care reform strategies;
• To understand cases study methodology regarding comparison of components of health systems
• To apply the acquired knowledge in the context of;
• To design, carry out and reflect on a (comparative) analysis of developing, transitional and developed countries, making use of the framework for comparative analysis;
• To be able to link the characteristics of policy recommendations, strategies on health system reform and public opinions on certain aspects of care to the specific determinants of the country/region at hand.
• To give a well structured and academically solid lecture on the comparison of countries;
• To write a clearly structured and academically solid paper on the comparative analysis you have carried out;
Inhoud vak
Given the fact that health systems worldwide are confronted with
demographical and epidemiological changes, health systems are currently
experiencing a period in which they have to re-assess their set-up,
framework and goals. In this course you will obtain an overview of the
complex nature of health systems and its different components, both with
respect to conceptual components (service delivery, resource creation,
stewardship, financing) and content components (primary care, mental
health care, etc), and you will acquire skills to analyze and compare
these components. In various lectures, both the quantitative aspects,
and the critique there-upon, and the qualitative aspects of health
system comparison is discussed. Furthermore, you will gain insight in
the complexity and culturally determined nature of health system design
and health system reform, through a series of lectures form VU-lecturers
and experts from a variety of institutions such as the Royal Tropical
Institute and the Nivel. Through two assignments, you learn and reflect
on the topics that are discussed throughout the course. First, you will
critically review a comparative analysis report on a specific aspect of
health care in Europe, and present this in a lecture. Second, you will
set up your own comparative analysis between two selected countries on a
specific health care theme. In this case, you are invited to look
critically at your own analysis process. You will report on you findings
by means of a report and via a poster presentation. In both assignments
you will have regular feedback sessions with health researchers in small
groups.

Onderwijsvorm
‘Research methods for needs assessments’ is a fulltime course of four
weeks (6 ECTS). The total study time is 160 hours. Tuition methods
include lectures, training workshops, and self-study.
The different elements have the following study time:
- lectures 22 hours
- assignment sessions 28 hours
- (project) self study 108 hours
- pass/fail test 2 hours

Attendance to the assignment sessions is compulsorily

Toetsvorm
Your are assessed on the basis of two comparative case study
assignments. Both assignments need to be passed (higher then 5.5).
- Assignment 1: 40%
- Assignment 2: 60%
In addition a brief pass/fail test is given which needs a pass but is
not graded, to check lecture attendance.

Literatuur
A selection of literature will be made on the basis of lectures and
state of the art research. (selection of last years literature)

 systems. In Merson, M.H., Black, R.E. and Mills, A.J. (eds.).
 International public Health: diseases, programs, systems and policies.
 London: Jones and Bartlett.

Methods: Benchmarking

Methods: case study
- Hsiao (2003). What is a health system and why should we care
- Building the field of health systems and policy research
- Framing the questions
- An Agenda for Action
- Social Science Matters

Aanbevolen voorkennis
It is recommended that students have knowledge on public policy in the context of healthcare.

Doelgroep
Compulsory course within the Master specialization International Public Health, optional course within the Master specialization Infectious Diseases (master programme Biomedical Sciences). In any other circumstances admission should be requested from the course coordinator.

Overige informatie
Guest lecturers:
Prof. dr. Joep Lange
dr. Rob Baltussen, health economics at (UMCG)
Internship Biomedical Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471158 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. R.J. van Belle-van den Berg</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Internship Cardiovascular Diseases

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471136 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. R.J. van Belle-van den Berg</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Internship Communication Specialisation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471145 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. R.J. van Belle-van den Berg</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Internship Educational Specialisation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471143 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. R.J. van Belle-van den Berg</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Internship Immunology
Internship Infectious Diseases

Vakcode	AM_471137 ()
Periode | Ac. Jaar (september)
Credits | 30.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Coördinator | dr. R.J. van Belle-van den Berg
Niveau | 600

Internship International Public Health

Vakcode	AM_471138 ()
Periode | Ac. Jaar (september)
Credits | 30.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Coördinator | dr. R.J. van Belle-van den Berg
Niveau | 600

Internship Med. and Behavioural Genomics

Vakcode	AM_471142 ()
Periode | Ac. Jaar (september)
Credits | 30.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Coördinator | dr. R.J. van Belle-van den Berg
Niveau | 600

Internship Societal Specialisation

Vakcode	AM_471144 ()
Periode | Ac. Jaar (september)
Credits | 30.0
Voertaal | Engels
To understand how the interaction of a pathogen with its host is studied (in vitro studies, use of alternative in vivo models, different approaches of mutant screening).

To understand the variation within microbial pathogens and the effect this variation has on host adaptation.

To understand what virulence factors are and how they are regulated by the pathogen.

To apply the acquired knowledge to interpret scientific literature and scientific hypotheses regarding pathogen-host interactions.

The recent explosion in genomic data of both microbes and eukaryotic hosts and the continuous progress in molecular biology allows a detailed analysis of the molecular interactions between a pathogen and its host. This knowledge is necessary because we are continuously exposed to new emerging pathogens and the resurgence of old plagues and need new vaccines and anti-microbial compounds. However, which technique should and could be used for a specific problem and how to interpret conflicting outcomes using different experimental strategies?

This course aims to provide a thorough understanding and practical experience of molecular biology as it applies to infectious agents. The course covers the application of molecular biology to studying the basic biology of pathogenic bacteria and viruses (their virulence factors, taxonomy and genetic typing) and the genetic susceptibility of
the host to infection. It aims to equip students with the specialised knowledge and skills necessary to assess primary literature on medical microbiology.

Onderwijsvorm
The course has three different parts: lectures, practicum and workshop. In the latter part students will discuss with each other opposing views on controversial topics in medical microbiology that recently appeared in the literature.

contact hours:
- lectures: 18
- Literature Workshop: 17
- Practicum: 30-40

Toetsvorm
written exam (50% of final mark and should be minimally 5,5)
literature discussion (workshop, 30% of final mark)
practicum (20% of final mark)

Literatuur
Reader will be available one week before the start of the course.

Vereiste voorkennis
Bachelor's course 'Infectieziekten' and 'Immunologie' or an equivalent course in Microbiology and Molecular Biology with practical skills of handling microorganisms safely

Doelgroep
Students with a keen interest to study the interaction between a pathogen and its host, from a practical as well as a theoretical point of view

Overige informatie
Guest lectures:
- Dr. Peter van der Ley, RIVM Bilthoven, molecular techniques used for vaccine development
- Dr. Lia van der Hoek, AMC Amsterdam, identification of novel viral pathogens

Parasitology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470052 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. M. Campos Ponce</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum, Practicum, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
This course aims to provide students with a wide knowledge and understanding of Medical Parasitology.
At the end of the course students will have learned the principles of medical parasitology and will be able to:
* apply these principles to different parasite groups
* describe parasite life cycles
* identify the role of the host and parasite on the outcome of an infection
* describe (and understand) the effect of parasite infection on other infectious diseases as well as on non-communicable diseases
* describe the advantages and disadvantages of diagnostic techniques as discussed in literature.
* describe the principles for treatment and prevention programmes
* describe the principles for vaccination research
* debate on the pros and cons of the elimination of parasites

Inhoud vak
The course will cover all aspects of medical important parasites: life cycles, virulence factors, (immunological) interaction between parasites and their host(s), diagnosis, epidemiology, control and elimination.

Onderwijsvorm
Lectures will be followed by discussion groups or in-class assignments. In discussion groups students will be expected to demonstrate an in-depth understanding of medically important parasites.

During the first two weeks students will have (interactive) guest lectures covering all aspects of medical parasitology. During these first two weeks they will also have to present selected articles during two sessions and they will have the opportunity to observe and identify parasites during the parasite demonstration.

The examination will take place in the third week.

The final week is devoted to selected parasites that are almost eliminated. Students will pitch selected parasite during an elevator pitch during a call for proposals session. And at the end of the week the students will have to actively participate in a debate on the pros and cons of elimination of selected parasites.

Total contact hours:
Lectures: 32 hours
Workgroups: 14 hours
Parasite demonstration: 4 hours

Toetsvorm
The final grade will be determined on the basis a written examination. Bonus points can be earned on the basis of oral presentations (regular presentations as well as their performance during the elevator pitch and the debate).

Literatuur
Reader

Vereiste voorkennis
Immunology, Infectious disease

Aanbevolen voorkennis
Basic cell biology and basic immunology

Doelgroep
Optional course within the MSc programmes of Health Sciences and Biomedical sciences

Overige informatie
Several guest lectures will be invited to give lectures

Pathophysiology of Heart and Circulation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>M_CPATHO09 (3120014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>VUmc</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. W.S. Simonides</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Literatuur
Book: Cardiology, Crawford-Di Marco-Paulus 3rd Ed.(recommended) syllabus including relevant articles.
Book: Pathophysiology of heart disease (Ed L.S. Lilly); syllabus including relevant articles.

Intekenprocedure
Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams.

Policy, Management and Organisation in International Public Health

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470819 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.E.W. Broerse</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. J.E.W. Broerse, M.O. Kok</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To develop a detailed understanding of the health policy process and its outcomes both at national and international level
To acquire insight into the different theoretical concepts on policy design in the field of public health
To understand how policy decisions are translated into programs and projects, and subsequently implemented
To get acquainted with different management practices in health programs
To gain insight into change management
To get acquainted with and acquire skills in international diplomacy,
resolution writing, negotiation and the procedures of the United Nations

Inhoud vak
This course contains two parts that will run parallel throughout the course: a theoretical part and a practical, diplomacy, part. In the theoretical part you study different theoretical concepts of policy science in international public health. You study core concepts of public administration in relation to IPH such as power relations, securing public interest, public versus private sector, managing change and the network society. Questions are addressed such as: In what way does the political structure of a country influence health policies; Why do certain topics get on the policy agenda while other topics never make it; Why do policy makers and politicians regularly seem to ignore scientific insights; To what extent do international organisations (such as the World Bank and the World Health Organisation) influence national policies? In the diplomacy part you develop basic diplomatic skills by practicing them in 4 training sessions and a final 1.5 day World Health Organization simulation under Model United Nations rules of procedure (WHO MUN). Model United Nations (informally abbreviated as Model UN or MUN) is an academic simulation of the United Nations that aims to educate you about civics, effective communication, globalization and multilateral diplomacy. In Model UN, you take on roles as foreign diplomats and participate in a simulated session of the WHO.

Onderwijsvorm
Lectures (29 hours), training workshops (14 hours) and simulation (12 hours), self study (102,5 hours), and examination (2.5 hours)

Toetsvorm
Individual exam (70%) and diplomacy assignment (30%). Both grades need to be at least 5.5 to pass the course.

Literatuur

Other reading materials via Blackboard

Doelgroep
Compulsory course within the Master specialization International Public Health; optional course for students in other specializations of the Masters Health Sciences and Biomedical Sciences.

Overige informatie
Attendance of training workshops and simulation is compulsory.
For further information and application, please contact Anna van Luijn (a.van.luijn@vu.nl)

Policy, Politics and Participation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470589 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Doel vak
To further deepen your analytic skills with respect to the assessment of a specific societal problem;
To acquire further insight into the practice of interactive research;
To acquire further insights into specific methods and techniques of interactive research;
To strengthen the skills to design an interactive research project;
To practice skills in data collection and analysis;
To learn to set up valid lines of argumentation;
To improve your communication skills;
To improve your skills in working effectively in a project team, through team building, team analysis and feedback.

Inhoud vak
In this course you get the chance to gain experience in the practical implementation of methodologies for interactive research. In a four week policy project you will both improve your focus group research skills and deepen your understanding of the relevant theoretical concepts in the areas of policy studies, science and technology studies and democracy theory. In a group of about ten students you will participate in a real interactive research project which is executed at the Athena institute. In this project you will be trained in and practice various skills for data collection (such as focus group design and facilitation) and data analysis (such as qualitative content analysis). Specific attention is paid to your personal interactive research skills. At the end of the course, you prepare a policy report to present your findings. In an oral presentation your team will highlight the main results of your analysis and defend the recommendations you propose.

Onderwijsvorm
Lectures, training workshops, project assignment

Toetsvorm
Individual evaluation based on personal performance in the project group and assessment of various group products (report and presentation). All parts need to be passed.

Literatuur
To be announced on Blackboard

Doelgroep
Optional course for Master students Management, Policy Analysis and Entrepreneurship in Health and Life sciences (MPA), Societal differentiation of the Health, Life & Natural Sciences.

Overige informatie
Basic knowledge of (interactive) policy processes, policy analysis and relevant research skills are required. Attendance is compulsory.

Psychophysiology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470736 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.C.N. de Geus</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. J.C.N. de Geus</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Werkgroep, Practicum, Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
1) Insight in the link between emotional state and peripheral nervous system activity and the most recent experimental approaches and research designs in the field of autonomic and cardiovascular psychophysiology.

2) Practical skills in the measurement of autonomic nervous system and cardiovascular stress-reactivity.

Inhoud vak
In plenary lectures we will outline the organisation of the autonomic nervous system and the cardiovascular system and how their activity is reflected in peripheral physiological signals. The lectures are interspersed with a series of practicals, where the students apply a broad arsenal of instruments and techniques (ElectroCardioGram, ImpedanceCardioGram, Skin-conductance, Respiration, Finger Blood Pressure, Hormones) to record these signals and to extract parameters that can be used to index psychological processes (e.g. mental load, emotion and stress). This will be done in a standardized laboratory setting using the Biopac system as well as in naturalistic open-field settings using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). Amongst others, students will measure (on each other): skin-conductance responses to emotion, cardiorespiratory coupling, baroreflex regulation, and sympathetic and parasympathetic reactivity to mental and physical stress. The main principles and strategies for data analysis will be covered in the lectures and applied in the practicals to the self-recorded data-sets.

Onderwijsvorm
In plenary lectures we will outline the organisation of the autonomic nervous system and the cardiovascular system and how their activity is reflected in peripheral physiological signals. The lectures are interspersed with a series of practicals, where the students apply a broad arsenal of instruments and techniques (ElectroCardioGram, ImpedanceCardioGram, Skin-conductance, Respiration, Finger Blood Pressure, Accelerometry) to record these signals and to extract parameters that can be used to index psychological processes (e.g. mental load, emotion and stress). This will be done in a standardized laboratory setting using the Biopac system as well as in naturalistic open-field settings using the Vrije Universiteit Ambulatory Monitoring System (VU-AMS). Amongst others, students will measure (on each other): skin-conductance responses to emotion, cardiorespiratory coupling, baroreflex regulation, and sympathetic and parasympathetic reactivity to mental and physical stress. The main principles and strategies for data analysis will be covered in the lectures and applied in the practicals to the self-recorded data-sets.
System (VU-AMS). Amongst others, students will measure (on each other): skin-conductance responses to emotion, cardiorespiratory coupling, baroreflex regulation, and sympathetic and parasympathetic reactivity to mental and physical stress. The main principles and strategies for data analysis will be covered in the lectures and applied in the practicals to the self-recorded data-sets.

Number of contact hours:
Lectures: 20h
practicals & practical preparation: 70h
Examination: 2h
self-study: 70h

Toetsvorm
Written examination (50% of grade) and independent performance of a short experiment (20%) and analysis and presentation of the data collected (30%).

Literatuur
1) Psychophysiology reader with selected articles

AND

OR
2b) Stanfield J, Principles of Human Physiology (4th Ed). Pearson Education Inc: chapters 13,14 (Circulation), and 16 (Respiration)

AND

3) 6 short practical manuals

Qualitative and Quantitative Research Methods

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470582 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. J.F.H. Kupper</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
Understanding the differences between beta- and gamma research
To acquire insight and understanding of a transdisciplinary research process. This includes knowledge of the character of and need for transdisciplinary approaches, and their advantages and disadvantages
To acquire insight into various quantitative and qualitative research methods and their underlying theoretical concepts
To understand the relative strengths and weaknesses of the various
research methods
To know how to interpret quantitative and qualitative findings
To acquire insight and understanding of the possibilities to integrate
quantitative and qualitative research information
To be able to make an adequate transdisciplinary research design for
the investigation of a specific problem.

Inhoud vak
Contemporary societies increasingly face complex social problems, like
climate change, HIV/AIDS or ethnic and religious diversity. These
complex problems involve a variety of social actors: policy-makers,
professionals, NGOs, industry, science and of course the public at
large. Addressing such complex issues demands a transdisciplinary
approach that investigates, analyzes and integrates the positions and
knowledge of different actors. This course offers an (advanced)
introduction to various research methods used in transdisciplinary
research: questionnaires, systematic observations using all the senses,
surveys and statistics, semi-structured in-depth interviews, as well as
several interactive and participatory methods. These methods are
commonly used in transdisciplinary research into complex problem
contexts, communication, and opportunities for intervention. Strengths
and weaknesses of each research method and technique will be discussed,
as well as its possibility to be applied in different societal contexts.
Throughout the course, you will apply theoretical knowledge about the
various research methodologies in the training of different qualitative
and quantitative methods, and in making a research design. In small
groups, students are trained in: (1) qualitative research methods such
as semi structured interviews and observation techniques, (2)
quantitative research methods such as questionnaires, 3) analysis of the
data, and (4) writing a transdisciplinary research design.

Onderwijsvorm
Lecture (20h), Training workshops (30h), Self-study (107h), Examination
(3h).

Toetsvorm
Group assignment (50%) and exam (50%). Both parts need to be passed (6).

Literatuur
Announced on blackboard one month before course starts

Doelgroep
Compulsory course in the Master programme Management, Policy Analysis
and Entrepreneurship for the Health and Life Sciences (MPA) and
compulsory course within the Science communication- and Societal
differentiations of Health, Life and Natural Sciences Masters
programmes.

Overige informatie
Attendance of training workshops is compulsory. For further information
please contact harry.wels@falw.vu.nl.

Remodelling of the Circulatory System

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>M_CREMODE09 (3120001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Inhoud vak
This course focuses on the pathophysiological mechanisms of vascular remodelling in pulmonary disease and ischemia.

The following topics will be addressed:
• pathophysiology of angiogenesis;
• vascular and cardiac effects of pulmonary hypertension;
• the role of fat tissue in vascular regulation;
• the effect of mechanical ventilation on the cardiovascular system.
• Basic aspects of atherclerosis
• Immunology
• Therapy in cardiovascular disease

The course contains the following practical elements:
• 3D-life cell imaging of vascular cells;
• journalclub

Literatuur
relevant articles

Intekenprocedure
Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams.

Overige informatie
Contact: j.w.m.niessen@vumc.nl

Research Methods for Need Assessments

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470817 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. B.J. Regeer</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
• The overall goal is to acquire insights, skills and attitudes regarding various quantitative and qualitative research methods used for conducting needs assessment, analysis of health problems, epidemiologic
investigation, field surveys to strengthen public health surveillances and understand the relative strengths and weaknesses of the various research methods

- To be able to make an adequate research design for the analysis of a specific health problem (theory, concepts and design)
- To acquire knowledge and skills in interview techniques, questionnaire design, and observation (data collection)
- To acquire insight in ways to involve community members and patients to include their views and jointly decide on the needs and priorities. This includes interactive and participatory methods for transdisciplinary research, such as focus groups, diagramming, mapping and other visualisation techniques (participative data collection)
- To know how to interpret quantitative and qualitative findings in the context of international public health (data analysis)

Inhoud vak

This course focuses on the knowledge, skills and attitude needed to design and conduct research in the field of international public health, with a specific focus on needs assessments. Before planning a health intervention, a thorough epidemiological, behavioural and social analysis of quality of life, health problems, health related behaviours, their causes and contributing factors should be conducted.

The social context, environmental factors and community capacity should be investigated. To achieve results, it is necessary for health workers to (1) work with other sectors in a so called inter-sectoral approach, and (2) work with the community, since communities have relevant knowledge which increases the quality of the interventions and ownership of the implementation process. In other words, a transdisciplinary approach is required.

A variety of qualitative and quantitative methods can be employed. During this course the most essential research methods will be addressed and practiced: questionnaires, surveys and epidemiological statistics, semi-structured in-depth interviews, as well as several interactive and participatory methods, such as focus group discussions, diagramming, mapping and other visualisation techniques. Strengths and weaknesses of each research method and technique will be discussed, as well as the possibility to apply them in resource-poor settings and in different communities.

Throughout the course, students will apply the acquired theoretical knowledge by conducting and presenting their own mini-study in small groups.

Onderwijsvorm

'Research methods for needs assessments' is a fulltime course of four weeks (6 ECTS). The total study time is 160 hours. Tuition methods include lectures, training workshops, and self-study.

The different elements have the following study time:

- lectures 18.5 hours
- workshops and training 31.5 hours
- (project) self study 107 hours
- examination 3 hours

Attendance to the workshops and training is compulsory

Toetsvorm

The course grade is based on the study design and the exam. Both aspects have to be concluded with the grade of 5.5 or higher.

Exam : 50% of total grade
Study-Design: 50% of total grade
Literatuur

Additional literature will be provided on blackboard.

Vereiste voorkennis
Knowledge of epidemiology and SPSS is a prerequisite to gain access to this course.
For further information please contact b.j.regeer@vu.nl.

Doelgroep
Compulsory course within the Master specialization International Public Health, optional course within the Master specialization Infectious Diseases (master programme Biomedical Sciences). In any other circumstances admission should be requested from the course coordinator.

Overige informatie
Guest lecturer epidemiology: dr. A. Anderson, Senior Quality Engineer Ortho Clinical Diagnostics, UK

Science and Communication

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470587 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>Dr. B.J. Regeer</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>Dr. B.J. Regeer, Dr. J.F.H. Kupper, T. de Lange MSc, B.M. Tielemans</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
- Gain theoretical insight in the relationship between science and society,
- Gain insight in the role of science communication in this relationship,
- Acquire knowledge of different theories and models of science communication,
- Acquire knowledge of different strategies, media and activities for science communication,
- Learn how to apply theoretical concepts to real-life examples,
- Development of practical skills for science communication (e.g. writing, discussing).

Inhoud vak
Science is all around us and shapes our lives in many different ways. From the vaccines you need for travelling abroad, to the technological devices you use on a daily basis. At the same time, society shapes the development of science and technology. Science and society influence each other continuously; they communicate. Students of Science Communication are expected to become experts in understanding and
designing interaction between science and society. In order for this interaction to be fruitful and valuable for both science and society, it is important to gain in-depth knowledge about the theoretical basis of the field of science communication and understand communication processes at the core of several interfaces; e.g. the communication between scientists from different disciplines, between different sciences and their stakeholders, and between science and the public. This course provides a broad basis in the field of science communication by addressing the main areas of science communication and by discussing and challenging several core concepts within this field. Students are invited to explore some issues in greater depth and active participation in lectures and workgroups is required.

Onderwijsvorm
Lectures (22 h)
Workgroups (18 h)
Home-study for group assignments (8 h)
Home-study for individual assignments/exam (90 h)

Toetsvorm
Individual assignments (30%), group assignment (10%), examination (60%). For all parts a pass grade needs to be obtained.

Literatuur
Academic articles. Direct links to articles will be provided on BlackBoard one month before the beginning of the course.

Doelgroep
The course Science and Communication is a compulsory course for students of the Master specialisation Science Communication (Wetenschapscommunicatie) and is a prerequisite for the internship. Science and Communication is an optional course for students from other master programs in the health and life sciences.

Overige informatie
Guest lecturers amongst others:
A. van der Plas (TNO)
F. van Dam (CSG, Centre for Society and the Life Sciences)

Science in Dialogue

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1002 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. J.F.H. Kupper</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. J.F.H. Kupper</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Werkgroep, Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
To gain knowledge and insight into:
- the basic concepts and issues in the understanding of science-society interactions, both from a philosophical and communication
science perspective
- the nature and course of interpersonal and group communication processes relevant to the formal and informal dialogue between science and society
- the nature and form of dialogical science communication, aimed at mutual understanding and learning
To acquire or improve:
- the individual student’s skills for effective interpersonal communication
- the individual student’s skills for the design and facilitation of the science-society dialogue

Inhoud vak
This course examines the public character of scientific controversy and focuses on the communicative aspects of a fruitful science-society dialogue. At the dawn of the 21st century, science, and particularly fields that combine science and engineering such as nanotechnology and synthetic biology, holds a great promise for the progress of our societies. At the same time, these developments are controversial. They lead to a variety of concerns related to risks, benefits and wider moral issues. Nanotechnology creates materials with novel characteristics that help us, but may also contain risks for health and environment. Synthetic biology develops new biological systems that may be very useful, but radically change the nature and meaning of life. Clearly, advances in science do not always match the needs, desires and expectations of society. On the other hand, parts of society might not always appreciate the nature and scope of scientific findings. For a fruitful relationship between science and society, a constructive science-society dialogue is necessary.

This course offers advanced lectures on the basic concepts and issues of dialogical science communication: communication, learning, dialogue, understanding, controversy, democracy. A series of workshops and small group assignments presents communicative tools and spaces such as discussion games, science theatre and multimedia platforms that can be used to design and facilitate science-society interactions. Training workshops will focus on improving the students’ individual communication and facilitation skills. The students’ individual learning curve as a science communicator and facilitator is monitored by means of a personal development plan. The course is completed with an individual essay assignment about the sense and nonsense of the science-society dialogue.

Onderwijsvorm
Lectures (14h), Workgroups (28h), Training workshops (24h), Selfstudy, (82h), Dialogue presentations (12h)

Toetsvorm
Group assignment (50%), Take home exam (30%), Mini portfolio (20%)

Literatuur
Is announced on blackboard one month before start of the course

Doelgroep
Optional course in the MSc specialization Science Communication

Overige informatie
Independence and a cooperative attitude is expected. Attendance to training workshops is indispensable.

Science Journalism
Doel vak
To acquire knowledge and insight into:
- the popularization of natural scientific knowledge and the use of different media
- the criteria for effective science journalism with respect to diverse media
- the role of science journalists in the debate about knowledge in society
To acquire skills in:
- writing popular scientific texts for different genres such as news, background and interview
- designing science communication for different media such as newspaper, radio and internet
Orientation to the professional practice of science journalism

Inhoud vak
This course teaches the basic principles of science journalism. A series of interactive lectures reviews both the practical as well as the theoretical aspects of science journalism. Topics that are discussed are the translation of science to a language that is both compelling and understandable, the role of journalism in the interaction between science and society, images of science in the media and the ethics of science journalism. The interactive lectures invite you to take your own defendable position with regard to these issues.
Guest lectures provide insight into the professional practice of science journalists. The guest speakers work as freelancer, editor or producer at diverse science media, such as newspapers (NRC, Volkskrant), magazines (NWT), internet (Noorderlicht) and radio (Labyrint).
Finally, the course trains specific skills that you need as a science journalist, such as popular writing, interviewing, conceptual analysis and program design.

Onderwijsvorm
Lectures and seminars on theory and practice of science journalism and writing skill training (36h). Considerable time is set aside for performing science journalism in assignments (108h). The assignments are assessed by lecturers and fellow students (peer-review process). Self study (16h).

Toetsvorm
Individual exam (20%), Individual Assignments (50%), Small Group Assignments (30%)

Literatuur
Announced on Blackboard one month before start of the course
Doelgroep
All Master students with a Beta-Bachelor degree. Students taking this course as part of their C-differentiation within FALW or FEW will have precedence over other students. Students from other faculties and or universities need to get formal consent from the course co-ordinator (Frank Kupper) before enrolment.

Overige informatie
Course is taught in Dutch. More information: f.kupper@vu.nl.

Science Museology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470590 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 3</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. B.J. Regeer</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. B.J. Regeer, drs. ir. M.G. van der Meij, T. de Lange MSc</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
- Gain insight in the role of museum exhibits in the field of science communication.
- Apply theoretical notions of science communication and science education, to conduct science communication research in museum settings.
- Apply qualitative and quantitative research methods to design, conduct, and report on a research project in museum settings.
- Apply theoretical notions of science communication, science education and exhibit design to advise on adjustments and/or development of exhibitions.

Inhoud vak
This course is about the role of science museums/centers, zoos and natural history museums in science communication. You will get familiar with theories of science communication and informal science education in museum setting, and will be introduced to different educational methods as well as styles of communication, different approaches to exhibit design & development, and different methods of research and evaluation of exhibitions.

Guest speakers give insight into their profession (1) as science communicators in museums and science centers, (2) as researchers in the field of museology, and/or (3) as professionals in developing informal science & technology learning programs.

Through several assignments you are encouraged to combine theory and practice, working step-by-step towards (part of) an exhibition (re-) design. The assignments come from museums and science centers, such as NEMO, Museon, Naturalis, Delft Science Centre, and Artis.

Onderwijsvorm
Lectures (14 h)
Workgroups (40 h)
Home-study for group assignments (64 h)
Home-study for individual assignments (32 h)

Toetsvorm
Group assignment (40%), presentations (poster and oral) (10%), and exams (take-home and written) (50%). For all the assignment, presentations and all exams a pass-grade must be obtained.

Literatuur
Academic articles. Direct links to articles will be provided on Blackboard one month before the beginning of the course.

Vereiste voorkennis
Bachelor in any of the Beta Sciences

Doelgroep
Optional course in the C-differentiations (Science Communication) of most of the two-year master programs of the FALW and FEW faculties. Master students from other universities in any scientific field are welcome as well.

Overige informatie
Guest lecturers:
E. Hamstra (Northernlight)
C. Vermeulen (Artis)
M. van der Meer (Delft Science Centre)
I. van Zeeland (Naturalis)
And possibly additional guest lecturers from NEMO, Boijmans van Beuningen, Museon, Van Gogh Museum, etc.

Scientific Writing in English

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471023 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>M. van den Hoorn</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
The aim of this course is to provide Master’s students with the essential linguistic know-how for writing a scientific article in English that is well organized idiomatically and stylistically appropriate and grammatically correct.
At the end of the course students
- know how to structure a scientific article;
- know what the information elements are in parts of their scientific article;
- know how to produce clear and well-structured texts on complex subjects;
- know how to cite sources effectively;
- know how to write well-structured and coherent paragraphs;
- know how to construct effective sentences;
- know what collocations are and how to use them appropriately;
- know how to adopt the right style (formal style, cohesive style, conciseness, hedging)
- know how to avoid the pitfalls of English grammar;
- know how to use punctuation marks correctly;
- know what their own strengths and weaknesses are in writing;
- know how to give effective peer feedback.

Final texts may contain occasional spelling, grammatical or word choice errors, but these will not distract from the general effectiveness of the text.

Inhoud vak
The course will start with a general introduction to scientific writing in English. Taking a top-down approach, we will then analyse the structure of a scientific article in more detail. As we examine each section of an article, we will peel back the layers and discover how paragraphs are structured, what tools are available to ensure coherence within and among paragraphs, how to write effective and grammatically correct sentences and how to choose words carefully and use them effectively.

Topics addressed during the course include the following:
- Structuring a scientific article
- Considering reading strategies: who is your readership? How do they read your text? What do they expect? How does that affect your writing?
- Writing well-structured and coherent paragraphs
- Composing effective sentences (sophisticated word order, information distribution).
- Arguing convincingly – avoiding logical fallacies
- Academic tone and style: hedging – why, how, where?
- Using the passive effectively
- Understanding grammar (tenses, word order, etc.)
- Understanding punctuation
- Referring to sources: summarising, paraphrasing, quoting (how and when?)
- Avoiding plagiarism
- Vocabulary development: using appropriate vocabulary and collocations

Onderwijsvorm
Scientific Writing in English is an eight-week course and consists of 4 contact hours during the first week and 2 contact hours a week for the rest of the course. Students are required to spend at least 6 to 8 hours of homework per week. They will work through a phased series of exercises that conclude with the requirement to write several text parts (Introduction, Methods or Results section, Discussion and Abstract). Feedback on the writing assignments is given by the course teacher and by peers.

Toetsvorm
Students will receive the three course credits when they meet the following requirements:
- Students hand in three writing assignments (Introduction, Methods or Results, Discussion) and get a pass mark for all writing assignments;
- Students provide elaborate peer feedback;
- Students attend all sessions;
- Students are well prepared for each session (i.e. do all homework
assignments);
- Students actively participate in class;
- Students do not plagiarise or self-plagiarise.

Literatuur

Doelgroep
This course is only open to students of the Master's programmes of the Faculty of Earth and Life Sciences mentioned below. These students are only eligible to the course if they have already conducted scientific research (e.g. for their Bachelor’s thesis) or if they will be working on a research project when taking Scientific Writing in English.

Faculty of Earth and Life Sciences - Master’s programmes:
- Biology;
- Health Sciences;
- Ecology;
- Biomolecular Sciences;
- Biomedical Sciences;
- Neurosciences;
- Global Health;

Overige informatie
- To do well, students are expected to attend all lessons. Group schedules are to be found at rooster.vu.nl and on Blackboard.
- A VUnet registration for this course is necessary in order to enroll or be enrolled in a Blackboard group. The VUnet registration automatically gives access to the corresponding Blackboard site.
- Group enrollment only takes place via Blackboard. For open/general groups: students have to enroll themselves following FALW programmes containing this course. For group assigned to specific studies, students are enrolled by the course coordinator.
- Make sure Scientific Writing in English does not overlap with another course.
- If you have registered for a group in Blackboard, you are expected to attend all sessions (eight). If you decide to withdraw from the course, do so in time, both on Blackboard and in VUnet. This all will avoid a ‘fail’ on your grade list for not taking part in this course and allows other students to fill in a possible very wanted group spot.
- If you (expect to) miss a session, please inform the group trainer as soon as possible. If you miss a session without notification, you may not be able to finish the course.
- For any questions concerning this course, please contact the course coordinator Marieke Zantkuijl: m.c.l.zantkuijl@vu.nl

Statistical Genetics for Gene Finding

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470734 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>5.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
</tbody>
</table>

Vrije Universiteit Amsterdam - Fac. der Aard- en Levenswetenschappen - M Biomedical Sciences - 2013-2014

30-9-2015 - Pagina 66 van 71
Doel vak
Provide practical skills for genetic linkage and association studies

Inhoud vak
The first part of the course will focus on parametric and non-parametric linkage analysis in pedigrees, with special emphasis on mendelian inheritance of complex phenotypes. The second part of the course will concentrate on genome-wide association studies (GWAS). With the advent of SNP microarray-chips that can map the largest part of the common genetic variance, GWAS have been playing a significant role in the field of genetics for the last couple of years. With higher resolution than the classical linkage studies, GWAS have been able to uncover many variants with small effects on complex traits. Besides teaching the main theoretical concepts underlying GWAS and linkage analysis, this course also includes the hands on training needed to handle the large amounts of data and statistical tests. In the practical you will prepare your data, run GWAS and linkage analyses, learn how to visualize and interpret the output and distinguish real signal from noise. The practicals include the use of Merlin, PLINK, haploview, WGA-viewer, Galaxy, SPSS.

Onderwijsvorm
Lectures, practical hands-on computer training

Toetsvorm
Weekly assignments (25%) & exam (75%). Practicals need to be completed in order to obtain a final grade.

Literatuur
To be announced on Blackboard

Vereiste voorkennis
Behavioral Genetics (AM_470732) & Complex Trait Genetics (AM_470733)

Statistical Genetics for Gene Finding
Doel vak
Provide practical skills for genetic linkage and association studies

Inhoud vak
The first part of the course will focus on parametric - and non-parametric linkage analysis in pedigrees, with special emphasis on Mendelian inheritance of complex phenotypes and the possible ways to analyze these data. In current and future genetics, linkage analysis remains an essential tool to analyse pedigrees for research as well as clinical genetics. The knowledge required is essential for any geneticist.

The second part of the course will concentrate on genome-wide association studies (GWAS). With the advent of SNP microarray-chips that can map an essential part of the common genetic variance, GWAS have been playing a significant role in the field of genetics for the last couple of years. With higher resolution than the classical linkage studies, GWAS have been able to uncover many variants with small effects on complex traits.

Besides teaching the main theoretical concepts underlying GWAS and linkage analysis, this course also includes the hands on training needed to handle the large amounts of data and statistical tests. In the practical you will prepare your data, run GWAS and linkage analyses, learn how to visualize and interpret the output and distinguish real signal from noise. The practicals include the use of Merlin, Qtdt, Plink, haploview, WGA-viewer, Galaxy, SPSS.

Onderwijsvorm
Lectures, practical hands-on computer training.

Note that the lectures will be essential to answer most of the examined knowledge.

Contact hours: 4x2 hours lecture + 4x4 hours practicals.

First two weeks: Linkage

Second two weeks: GWAS

Literatuur

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ & Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81.

Robert Plomin, Claire M. A. Haworth and Oliver S. P. Davis. Common disorders are quantitative traits. Nature Reviews Genetics, published online 27 October 2009.

Additional literature involving recent techniques will be announced on Blackboard two weeks in advance of the course.

Vereiste voorkennis
Behavioral Genetics (AM_470732) & Complex Trait Genetics (AM_470733) & Basic Statistics.

Aanbevolen voorkennis
Variance components analysis, regression analysis.

Doelgroep
Any person interested in analyzing human DNA in relation to heritable (complex) traits: e.g., geneticists, molecular biologists.

Overige informatie
Additional useful information can be obtain from the following website links:
http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml
http://www.sph.umich.edu/csg/abecasis/Merlin/index.html
http://www.sph.umich.edu/csg/abecasis/qtdt/index.html

Vascular Function and Metabolic Diseases

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>M_CVASCFU09 (3120002)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>VUmc</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. E.H. Serné</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>
Doel vak
This course focuses on the fundamental role of inflammation, diabetes and hyperhomocysteinemia in vascular disease. Pathophysiology, new diagnostics and development of new therapies will be presented.

Inhoud vak
The following topics will be addressed: diabetes and vascular disease; diabetes and cardiac disease; hyperhomocysteinemia and vascular disease; inflammation and vascular disease: the role of sepsis; diagnostics of vascular complications; endovascular surgery as a new therapy in vascular disease.
The course contains the following practical elements: in vivo assessment of vascular function in humans; flow-cytometry of inflammatory cells / mediators; isolation and culture of endothelial cells; protein analysis & proteomics in vascular disease.

Toetsvorm
Written exam and assignments

Literatuur
Book: to be announced;
syllabus including relevant articles.

Intekenprocedure
Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams.

Viral Oncogenesis

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>M_OVIRONC03 (311168)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>VUmc</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.M. Middeldorp</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
The aim of the course is to give students an up-to-date insight into the mechanism of viral oncogenesis in humans.

Inhoud vak
The subjects of the course may include several of the following issues:
General aspects of DNA and RNA tumour viruses
Human papillomavirus (HPV) and cervical cancer
Hepatitis B/C viruses (HBV/HCV) and hepatocellular carcinoma
Human papillomavirus (HPV) and non-melanoma skin cancer
Epstein Barr virus (EBV) in lymphoma and carcinoma
Human Herpes Virus 8 (HHV8) and Kaposi's sarcoma
Onderwijsvorm

6-12 contact hours. In addition the course consists of independent learning on the basis of a literature study on selected topics. Introduction session with basic lectures will be provided by the teachers. Question time with the teachers to decide in consultation.

Toetsvorm

The course will be concluded by group presentations on literature studies (3 hours). Moreover, findings on literature studies should be summarized in a short written summary to be delivered at the end of the course.

Literatuur

Literature consists of recent (review) papers in the field of viral oncogenesis.

Doelgroep

This course is optional for students of the Master Course in Oncology who have completed three compulsory courses of the Master Course in Oncology.

Intekenprocedure

Students can register for this course and examinations via vunet.vu.nl (under My study, register for courses and exams). The general VU registration rules apply. Information on registration deadlines can be found in VUnet. Please note that the general VU rules are strict, both for booking of the classes and (resit-)exams.

Overige informatie

After the course the students will have thorough knowledge and in depth insight into:

the fundamental processes which play a role in viral oncogenesis
the mechanisms of the various oncogenic viruses the translation of fundamental research into clinical applications

Apply per email to the coordinator of the Master’s Programme in Oncology.