The aim of the Master programme Ecology is to provide you with the knowledge, skills and insight required to operate as an independent professional and to be a suitable candidate for a subsequent course of study leading to a career in Ecological research. After having completed the programme, you will have developed a critical scientific approach and an awareness of the ethical and societal aspects of Ecology.

The programme has two specialisations: ‘Ecology and Evolution’ and ‘Environmental Chemistry and Toxicology’. These specialisations are organised in close cooperation with the University of Amsterdam (UvA). This implies that some (course) components will take place at the Science Park of UvA and others at the VU campus. In all courses teachers of both universities will be participating.

Each course is given at one or the other university, so teachers move between classes. In general elective courses are given every two years (except Adaptive Dynamics and Biodiversity and Landscapes that can be taken every year).

When registered in the MSc Ecology programme of the VU you will also automatically be registered as a ‘bijvakstudent’ at the UvA (similarly for UvA students). You will thus be assigned a VUnetID and a UvAnetID. You should enrol for VU (course) components at: vunet.vu.nl using your VUnetID and for UvA (course) components: http://datanose.nl/#masterenrol with your UvAnetID.

You can find the content, study load and other details of each of the course modules in the course descriptions in this guide.

You can find all regulations applying to the classes and examinations of the Master’s programme in Ecology in the Academic and Examination Regulations of the Master’s Programme Ecology at the FALW website.

The year schedule 2014 - 2015 can be found at the FALW-website.

Further information about the MSc programme Ecology.

Note: Not every course is given each year, so please consult the year schedules for further information.
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expired programme components Ecology</td>
<td>1</td>
</tr>
<tr>
<td>MSc Ecology, spec. Ecology and Evolution</td>
<td>1</td>
</tr>
<tr>
<td>MSc Ecology, spec. Environmental Chemistry and Toxicology</td>
<td>2</td>
</tr>
<tr>
<td>Vak: (Bio)Molecular Spectroscopy (Periode 5)</td>
<td>2</td>
</tr>
<tr>
<td>Vak: Assessment of Nat. and Chem. Hazards (Periode 4)</td>
<td>3</td>
</tr>
<tr>
<td>Vak: Assessment of Natural and Chemical Hazards (Ac. Jaar (september))</td>
<td>4</td>
</tr>
<tr>
<td>Vak: Biogeochemical cycles (Ac. Jaar (september))</td>
<td>4</td>
</tr>
<tr>
<td>Vak: Biogeochemical Cycles (Periode 4)</td>
<td>4</td>
</tr>
<tr>
<td>Vak: Current Trends in Evolution (Ac. Jaar (september))</td>
<td>5</td>
</tr>
<tr>
<td>Vak: Current Trends in Evolution (Periode 1)</td>
<td>5</td>
</tr>
<tr>
<td>Vak: Ecosystem Services and Sc. Advocacy (Periode 1)</td>
<td>5</td>
</tr>
<tr>
<td>Vak: Ecotoxicology and Environmental Quality (Ac. Jaar (september))</td>
<td>7</td>
</tr>
<tr>
<td>Vak: Ecotoxicology and Water Quality (Periode 2)</td>
<td>9</td>
</tr>
<tr>
<td>Vak: Environmental Chemistry and Tox. II (Periode 1)</td>
<td>11</td>
</tr>
<tr>
<td>Vak: Environmental Chemistry and Toxicology I (Periode 1)</td>
<td>11</td>
</tr>
<tr>
<td>Vak: Environmental Chemistry and Toxicology II (Ac. Jaar (september))</td>
<td>13</td>
</tr>
<tr>
<td>Vak: Environmental Genomics and Adaptation (Periode 2)</td>
<td>14</td>
</tr>
<tr>
<td>Vak: Environmental Measuring Techn. (Periode 2)</td>
<td>16</td>
</tr>
<tr>
<td>Vak: Environmental Measuring Techniques (Ac. Jaar (september))</td>
<td>16</td>
</tr>
<tr>
<td>Vak: Ethics in Life Sciences (Periode 3)</td>
<td>18</td>
</tr>
<tr>
<td>Vak: Evolution of Species Interaction (Periode 2)</td>
<td>18</td>
</tr>
<tr>
<td>Vak: Evolution of Species Interactions (Ac. Jaar (september))</td>
<td>18</td>
</tr>
<tr>
<td>Vak: Evolutionary Dynamics (Ac. Jaar (september))</td>
<td>19</td>
</tr>
<tr>
<td>Vak: Evolutionary Dynamics (Periode 4+5+6)</td>
<td>19</td>
</tr>
<tr>
<td>Vak: Experimental Design and Analysis (Periode 2)</td>
<td>20</td>
</tr>
<tr>
<td>Vak: Literature Survey E&E (Ac. Jaar (september))</td>
<td>22</td>
</tr>
<tr>
<td>Vak: Literature Survey ECT (Periode 4+5+6)</td>
<td>23</td>
</tr>
<tr>
<td>Vak: Mass Spectrometry (Periode 2)</td>
<td>24</td>
</tr>
<tr>
<td>Vak: Masterclasses in Ecology and Evolution (Ac. Jaar (september))</td>
<td>24</td>
</tr>
<tr>
<td>Vak: Microbial Ecology (Periode 1)</td>
<td>26</td>
</tr>
<tr>
<td>Vak: Research Project Ecology and Evolution 1 (Ac. Jaar (september))</td>
<td>26</td>
</tr>
<tr>
<td>Vak: Research Project Ecology and Evolution II (Ac. Jaar (september))</td>
<td>28</td>
</tr>
<tr>
<td>Vak: Research Project Environmental Chemistry and Toxicology I (Ac. Jaar (september))</td>
<td>30</td>
</tr>
<tr>
<td>Vak: Research Project Environmental Chemistry and Toxicology II (Ac. Jaar (september))</td>
<td>32</td>
</tr>
<tr>
<td>Vak: Scientific Writing in English (Ac. Jaar (september))</td>
<td>33</td>
</tr>
<tr>
<td>Vak: Separation Sciences (Periode 1)</td>
<td>36</td>
</tr>
<tr>
<td>Vak: Soil-Plant-Animal Interactions (Periode 1)</td>
<td>37</td>
</tr>
<tr>
<td>Vak: Spatial Processes in Ecology (Periode 1)</td>
<td>38</td>
</tr>
<tr>
<td>Vak: Spatial Processes in Ecology and Evolution (Ac. Jaar (september))</td>
<td>38</td>
</tr>
</tbody>
</table>
Expired programme components Ecology

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of Natural and Chemical Hazards</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1042-UvA</td>
</tr>
<tr>
<td>Biogeochemical cycles</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1043-UvA</td>
</tr>
<tr>
<td>Current Trends in Evolution</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1038-UvA</td>
</tr>
<tr>
<td>Ecotoxicology and Environmental Quality</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_470512</td>
</tr>
<tr>
<td>Environmental Chemistry and Toxicology II</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1033</td>
</tr>
<tr>
<td>Environmental Measuring Techniques</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1041-UvA</td>
</tr>
<tr>
<td>Evolution of Species Interactions</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1017-UvA</td>
</tr>
<tr>
<td>Evolutionary Dynamics</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1019</td>
</tr>
<tr>
<td>Spatial Processes in Ecology and Evolution</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>AM_1039-UvA</td>
</tr>
</tbody>
</table>

MSc Ecology, spec. Ecology and Evolution

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Trends in Evolution</td>
<td>Period 1</td>
<td>6.0</td>
<td>AMU_0003</td>
</tr>
<tr>
<td>Ecosystem Services and Sc. Advocacy</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_1053</td>
</tr>
<tr>
<td>Environmental Genomics and Adaptation</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470506</td>
</tr>
<tr>
<td>Ethics in Life Sciences</td>
<td>Period 3</td>
<td>3.0</td>
<td>AM_470707</td>
</tr>
<tr>
<td>Evolution of Species Interaction</td>
<td>Period 2</td>
<td>6.0</td>
<td>AMU_0006</td>
</tr>
<tr>
<td>Evolutionary Dynamics</td>
<td>Period 4+5+6</td>
<td>6.0</td>
<td>AMU_0007</td>
</tr>
<tr>
<td>Experimental Design and Analysis</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470505</td>
</tr>
<tr>
<td>Literature Survey E&E</td>
<td>Ac. Year (September)</td>
<td>12.0</td>
<td>AM_1131</td>
</tr>
<tr>
<td>Masterclasses in Ecology and Evolution</td>
<td>Ac. Year (September)</td>
<td>3.0</td>
<td>AM_1016</td>
</tr>
<tr>
<td>Microbial Ecology</td>
<td>Period 1</td>
<td>6.0</td>
<td>AMU_0008</td>
</tr>
<tr>
<td>Research Project Ecology and Evolution I</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_1100</td>
</tr>
<tr>
<td>Research Project Ecology and Evolution II</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_1114</td>
</tr>
</tbody>
</table>
MSc Ecology, spec. Environmental Chemistry and Toxicology

Courses:

<table>
<thead>
<tr>
<th>Name</th>
<th>Period</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bio)Molecular Spectroscopy</td>
<td>Period 5</td>
<td>6.0</td>
<td>X_435062</td>
</tr>
<tr>
<td>Assessment of Nat. and Chem. Hazards</td>
<td>Period 4</td>
<td>6.0</td>
<td>AMU_0001</td>
</tr>
<tr>
<td>Biogeochemical Cycles</td>
<td>Period 4</td>
<td>6.0</td>
<td>AMU_0002</td>
</tr>
<tr>
<td>Ecotoxicology and Water Quality</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_1054</td>
</tr>
<tr>
<td>Environmental Chemistry and Tox. II</td>
<td>Period 1</td>
<td>6.0</td>
<td>AMU_0004</td>
</tr>
<tr>
<td>Environmental Chemistry and Toxicology I</td>
<td>Period 1</td>
<td>6.0</td>
<td>AM_1032</td>
</tr>
<tr>
<td>Environmental Genomics and Adaptation</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470506</td>
</tr>
<tr>
<td>Environmental Measuring Techn.</td>
<td>Period 2</td>
<td>6.0</td>
<td>AMU_0005</td>
</tr>
<tr>
<td>Ethics in Life Sciences</td>
<td>Period 3</td>
<td>3.0</td>
<td>AM_470707</td>
</tr>
<tr>
<td>Experimental Design and Analysis</td>
<td>Period 2</td>
<td>6.0</td>
<td>AM_470505</td>
</tr>
<tr>
<td>Literature Survey ECT</td>
<td>Period 4+5+6</td>
<td>12.0</td>
<td>AM_1132</td>
</tr>
<tr>
<td>Mass Spectrometry</td>
<td>Period 2</td>
<td>6.0</td>
<td>X_435604</td>
</tr>
<tr>
<td>Masterclasses in Ecology and Evolution</td>
<td>Ac. Year (September)</td>
<td>3.0</td>
<td>AM_1016</td>
</tr>
<tr>
<td>Research Project Environmental Chemistry and Toxicology I</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_1108</td>
</tr>
<tr>
<td>Research Project Environmental Chemistry and Toxicology II</td>
<td>Ac. Year (September)</td>
<td>30.0</td>
<td>AM_1113</td>
</tr>
<tr>
<td>Scientific Writing in English</td>
<td>Ac. Year (September)</td>
<td>3.0</td>
<td>AM_471023</td>
</tr>
<tr>
<td>Separation Sciences</td>
<td>Period 1</td>
<td>6.0</td>
<td>X_435609</td>
</tr>
<tr>
<td>Spatial Processes in Ecology</td>
<td>Period 1</td>
<td>6.0</td>
<td>AMU_0009</td>
</tr>
</tbody>
</table>

(Bio)Molecular Spectroscopy

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>Periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_435062 (435062)</td>
<td>Periode 5</td>
</tr>
</tbody>
</table>
This course deals with interactions between light and molecules as studied and employed by optical spectroscopy. Goal of the course is to acquire a deeper knowledge of several spectroscopic principles and techniques frequently applied in (bio)analytical chemistry.

The course will start with an introduction to photophysical principles and fundamentals of molecular spectroscopy. Basic aspects of molecular orbitals, electronic transitions and quantum mechanics will be treated. Basic properties of light and principal optical instrumentation will be discussed. The fundamentals, practice and applications of electronic spectroscopy (UV/Vis absorption, fluorescence, phosphorescence) and vibrational spectroscopy (infrared, Raman) will be systematically treated.

Lectures and problem solving sessions.

Written examination.

Lectures and problem solving sessions.

Basic knowledge on chemical structure, bonds and hybridization.

Basic principles of molecular orbitals, energy levels and molecular vibrations. Basic experience with absorption spectrometry.

mCh-AS

Assessment of Nat. and Chem. Hazards
Assessment of Natural and Chemical Hazards

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1042-UvA ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Biogeochemical cycles

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1043-UvA ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Biogeochemical Cycles

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0002 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 4</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>
Current Trends in Evolution

Vakcode	AM_1038-UvA ()
Periode | Ac. Jaar (september)
Credits | 6.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Niveau | 500

Inhoud vak
This course is offered by the UvA. See for the course description:

http://studiegids.uva.nl/web/uva/sgs/nl/c/741402.html

Overige informatie
Coordinator: A. Groot (UvA).
The course description can be found on the UvA website:

http://studiegids.uva.nl/sgs/WebSite_nl.
Course registration via UvA, not VU.

Current Trends in Evolution

Vakcode	AMU_0003 ()
Periode | Periode 1
Credits | 6.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen

Inhoud vak
This is an UvA course. For the course description, please visit

http://studiegids.uva.nl/

Ecosystem Services and Sc. Advocacy

Vakcode	AM_1053 ()
Periode | Periode 1
Credits | 6.0
Voertaal | Engels
Faculteit | Fac. der Aard- en Levenswetenschappen
Coördinator | prof. dr. J.A. Harvey
Examinator | prof. dr. J.A. Harvey
Lesmethode(n) | Hoorcollege

Doel vak
1. To stimulate the students in developing critical ways to evaluate and interpret scientific information, and particularly information on issues related to society, ecosystem services and the environment.
2. To teach students to filter through a large body of information that broaches both science and society.
The final attainment levels of this course include that students
1. understand the natural (ecological) economy and the many ways in
which it sustains the material (human) economy through the provisioning
of conditions and processes that underpin civilization.
2. have the ability to evaluate the ways in which humans impact nature
and how this is intimately linked with population and consumption
patterns that differ between nation states.
3. know how to determine how sustainable (or not) different nations of
the world are.
4. have the skills to critically evaluate the efficacy of information
presented by various sources (the media, internet etc.) on scientific
and environmental processes and problems.
5. can assess the role of scientists in studying and disseminating the
results of their research to society, and whether their views should
cross the threshold into the policy arena.

Inhoud vak
Four main topics with varying overlap and several themes.

1. Ecosystem services (ES) from an economic perspective; initial
discussion of important ecosystem services (focusing on provisioning and
supporting e.g. fisheries, crops, nutrient cycling, soil fertility, pest
control etc. Five to six lectures envisaged by J. Harvey and several
guest speakers. Assignment for students: provide an example of an ES
that has been valued (quantifiably) by economists. Try and find one
that falls in to the category of ‘supporting’ because these are the most
problematic in terms of valuation and prepare a short presentation.
Following this, discussion groups are assembled to debate and argue over
the over- or under-valuation of the services studied. Votes are taken
amongst the student body before and after the debate to see whose
arguments are most convincing.

2. Indices measuring human impact on the biosphere and on important ES.
Focuses on ecological footprint analyses (EFA) and how they relate to
nation states and the biosphere as a whole. Five to six lectures
envisaged by J. Harvey and several guest speakers. Assignment: select a
country and evaluate/calculate its ecological footprint in an essay. Is
the country sustainable? How much must it reduce its footprint to
achieve sustainability?

3. Critical evaluation of information on ecology and environmental
issues. How accurate is the media in covering issues such as climate
change and biodiversity loss? What other sources of information compete
for public attention? How accurate are blogs and web sites on the
internet? Are there hidden (or not-so-hidden) agendas that are at work?
How does one deal with the huge amount of information at our disposal?
Five to six lectures envisaged by J. Harvey and several guest speakers.
Assignment: presentation of an analysis of a newspaper or internet
article on a recent environmental issue. Evaluate its accuracy of
information and possible alternate agenda.

4. The role of scientists: how far should we step outside of the
university and research labs in disseminating information? The costs
(professional risks) and benefits (pro-active) of becoming involved in
societal debates. Lectures by prominent scientists. Assignment: write a
critical review or evaluation of an important environmental issue, and
design a plan for accurately conveying information on the subject to the
public through the media or internet.
Onderwijsvorm
Lectures and Workshops

Toetsvorm
Based on essays (50%) and presentations and contributions to workshops (50%)

Literatuur
Selected papers

Vereiste voorkennis
BSc in Biology, Earth and Economy, Future Planet Studies or Bèta-gamma with a minor in environmental science or ecology. Students with other previous education should contact the course coordinator.

Doelgroep
MSc students with a focus on ecological economics. The maximum number of participants is 50. Priority is granted to students in the MSc Ecology and Evolution programme of the VU and UvA.

Ecotoxicology and Environmental Quality

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470512 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Practicum</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
At the end of this course, students will have:
1. Gained theoretical knowledge of contaminants in the environment, their effects on organisms and ecosystems, and the assessment of water quality
2. Learned to determine the ecotoxicological effects of chemicals with laboratory toxicity testing
3. Developed a critical academic attitude in environmental management issues by combining scientific information and socio-economic arguments

Inhoud vak
This course is jointly organized by the VU University and the University of Amsterdam.
The course focuses on the contamination of aquatic ecosystems, from the molecular chemistry of major groups of toxicants to their impacts at the molecular, cellular, individual, population, and ecosystem level.
The first part of the course is a laboratory practical, in which students will gain hands-on experience in ecotoxicity testing using methods from bacteria, aquatic invertebrates and fish. Both whole-organism and molecular biological techniques are taught. Students will
evaluate scientific literature and the results of their experimental research to assess the risk of environmental contaminants for ecosystem health. At the end of the practical, students will present the results of their experimental work in a poster presentation.

The second theoretical part of the course will teach the student the state of the art in ecotoxicology. It is designed as a scientific symposium with invited lectures by internationally well-known guest lecturers. Students take the role of chairperson during these mini-symposia and introduce, pose questions and discuss critical issues with the lectures. Topics include emerging compounds, molecular mechanisms of toxicity, community ecotoxicology, water and sediment quality criteria and the EU Water Framework Directive. Scientific literature will be given as background information on each topic. The theoretical part ends with a symposium in which students present a critical evaluation of the topics presented.

Onderwijsvorm

- Laboratory practical course: 56 hours
- Lectures (introduction to practicals + scientific symposium): 36 hours
- Independent study: 68 hours

Toetsvorm

1. Written exam of 10 open questions (50% of mark)
2. Oral presentation of scientific symposium (25%)
3. Poster presentation of the laboratory practical course (25%).

The student has passed if each of the components has received a minimum of 5.0, and the final mark is equal to or higher than 5.5, in a range from 1-10.

Literatuur

A protocol for the practical will be provided.
For the theoretical part of the course, scientific articles will be provided by guest lecturers including:

Vereiste voorkennis
BSc in Biology, Ecology, Biomedical Sciences, Health Sciences, Earth Sciences, Chemistry or related fields

Aanbevolen voorkennis
BSc course in Environmental Toxicology (e.g. AB_1020) is recommended but not mandatory.

Doelgroep
Open to all MSc students in Biology, Ecology, Biomedical Sciences, Health Sciences, Earth Sciences, Chemistry or related fields. Compulsory course for MSc Ecology, ECT specialization

Overige informatie
Guest lecturers include Prof. Dr. P. de Voogt (UvA), Dr. M. Paumen Leon (Exxon Mobil), Dr. R. van der Oost (Waternet), Dr. H. van der Geest (UvA), Dr. I. Roessink (WUR), Dr. D. de Zwart, Dr. T. Traas, Dr. L Posthuma and Dr. W. Verweij (RIVM)

Ecotoxicology and Water Quality

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1054 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Practicum</td>
</tr>
</tbody>
</table>

Doel vak
At the end of this course, students will have:
1. Gained theoretical knowledge of contaminants in the environment, their effects on organisms and ecosystems, and the assessment of water quality
2. Learned to determine the ecotoxicological effects of chemicals with laboratory toxicity testing
3. Developed a critical academic attitude in environmental management issues by combining scientific information and socio-economic arguments

Inhoud vak
This course focuses on the effects of contamination of aquatic ecosystems, from the molecular chemistry of major groups of toxicants to their impacts at the molecular, cellular, individual, population, and ecosystem level.

The first part of the course is a laboratory practical, in which students gain hands-on experience in ecotoxicity testing using methods from bacteria, aquatic invertebrates and fish. Both whole-organism and molecular biological techniques are taught. Students will evaluate scientific literature and the results of their experimental research to assess the risk of environmental contaminants for ecosystem health. At the end of the practical, students will present the results of their experimental work in a poster presentation.
The second part of the course is theoretical and will teach the student the state of the art in ecotoxicology. It is designed as a scientific symposium with invited lectures by internationally renowned guest lecturers as well as PhD candidates who present their PhD research in ecotoxicology. Students take the role of chairperson during the symposium and introduce the speakers, ask questions and discuss critical issues. Topics include emerging compounds, molecular mechanisms of toxicity, community effects, global environmental problems, and chemical regulation. Scientific literature will be given as background information on each topic. The symposium is finalized with oral presentations in which students present a critical evaluation of the topics presented.

Onderwijsvorm
• Laboratory practical course: 56 hours
• Lectures (introduction to practicals + scientific symposium): 36 hours
• Independent study: 68 hours

Toetsvorm
1. Participation in laboratory practical course, including lab journal (15%)
2. Poster presentation of the laboratory practical course (35%).
3. Oral presentation of scientific symposium (15%)
4. Written exam of 10 open questions (35% of mark)

The student has passed if each of the components has received a minimum of 5.0, and the final mark is equal to or higher than 5.5, in a range from 1-10.

Literatuur
Protocols for the laboratory practical will be provided.
For the theoretical part of the course, scientific articles will be provided by guest lecturers including:

Vereiste voorkennis
BSc in Biology, Ecology, Biomedical Sciences, Health Sciences, Earth Sciences, Chemistry or related fields

Aanbevolen voorkennis
BSc course in Environmental Toxicology (e.g. AB_1020) is recommended but not mandatory.
Doelgroep
Open to all MSc students in Biology, Ecology, Biomedical Sciences, Health Sciences, Earth Sciences, Chemistry or related fields. Compulsory course for MSc Ecology, ECT specialization. Optional course for UvA MSc Biology, L&O track.

Overige informatie
For more information, please contact: Prof. dr. ir J. Legler, Room A-645, 020-5989516, juliette.legler@vu.nl

Environmental Chemistry and Tox. II

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU 0004 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Environmental Chemistry and Toxicology I

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1032 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
This course will teach you to evaluate the exposure to and effects of chemicals in the environment. Environmental Chemistry and Toxicology (ECT) integrates two disciplines: environmental chemistry and environmental toxicology. This ECT I course focuses on environmental toxicology, which deals with effects of chemicals in the environment on wildlife and human health, covering the realm of effects ranging from molecular and cellular to whole organism and ecosystem effects. This course can be taken together with ECT II (AM_1033), which focusses on environmental chemistry deals with the sources and fate of chemicals, as well as their environmental partitioning and transport, degradation and deposition.

General aim:
The main aim of the course Environmental Chemistry and Toxicology I is to understand the biological effects of chemicals in the environment on organisms, including humans.

Learning objectives
At the end of the course you will have learned

1. The main questions and key concepts in the field of environmental toxicology
2. To think critically in environmental quality and risk assessment issues
3. To present scientific results (both written and oral) and place them in the appropriate scientific context

Inhoud vak
Students will obtain a sound theoretical background in the major concepts in toxicology. Topics include chemical uptake and metabolism, molecular mechanism of toxicity, biochemical and physiological effects, community and population effects. Major groups of toxicants that will be discussed include pesticides, persistent organic pollutants and endocrine disrupting chemicals, as well as mixture toxicity. Toxicity testing and dose-response modeling are covered. Students will also research the main incidents and disasters involving chemicals in history. One important aspect of the course is the risk assessment of chemicals: when do we say that the exposure to a chemical is safe and when is it hazardous? Students will learn how to perform risk assessment as it is done in the real world, taking into account the exposure, effects on humans and wildlife, and other mitigating factors.

Onderwijsvorm
This course contains a series of lectures, seminars and working classes. Students prepare a scientific report on an important historical disaster involving chemicals and the impact of this disaster on the risk assessment of chemicals, and present their results in a series of presentations.
Lectures: 44 hours
Working classes: 12 hours
Presentations: 12 hours

Toetsvorm
The course is completed with a written exam worth 50% of the final mark. The environmental disaster report is worth 25% of the final mark. Oral presentations and the participation of the students in the course make up the final 25% of the course. The student has passed if the final mark is equal to or higher than 5.5 in a range from 1-10. Each component of the course (exam, report and presentations) must achieve a 5.0 or higher to pass.

Literatuur

Vereiste voorkennis
This course is open to all Master students with a BSc in Biology, Biomedical Sciences, Ecology or Chemistry. It is a compulsory course for MSc Ecology – ECT track students. For more information and to determine if you have sufficient background to take this course, please contact the coordinator (juliette.legler@vu.nl)

Aanbevolen voorkennis
This course is open to all Master students with a BSc in Biology, Biomedical Sciences, or Chemistry. It is a compulsory course for MSc Ecology – ECT track students. For more information and to determine
Doelgroep
This course is open to all Master students with a Biology, Ecology or Chemistry BSc. It is a compulsory course for MSc Ecology – ECT track students and can be followed in combination with ECT II (see AM_1033).

Environmental Chemistry and Toxicology II

Vakcode
AM_1033 ()

Periode
Ac. Jaar (september)

Credits
6.0

Voertaal
Engels

Faculteit
Fac. der Aard- en Levenswetenschappen

Coördinator
prof. dr. ir. J. Legler

Examinator
prof. dr. ir. J. Legler

Docent(en)
prof. dr. ir. J. Legler, dr. ir. C.A.M. van Gestel, dr. ir. T.H.M. Hamers

Lesmethode(n)
Hoorcollege, Practicum

Niveau
400

Doel vak
This course in environmental chemistry has the main aim of understanding processes that chemicals undergo in the environment. The course is taught at the UvA. It can be followed together with the course Environmental Chemistry and Toxicology I, which focuses on environmental toxicology.

Inhoud vak
This course describes the behaviour and fate of natural and man-made chemicals in water, soil and air and the organisms present therein. Topics include transport and distribution processes, and physico/biochemical reactions of compounds in environmental conditions; environmental soil chemistry; bioavailability, bioaccumulation, metabolism, and degradation of chemicals; biomonitoring, prediction and fate modelling in environmental compartments; biogeochemical cycles, structure property/activity relationships.

Onderwijsvorm
This course contains a series of lectures, seminars and working classes. Lectures: 26 hours Working classes: 4 hours

Toetsvorm
The final mark will be determined by a written exam

Literatuur

Vereiste voorkennis
For more information and to determine if you have sufficient background to take this course, please contact the coordinator juliette.legler@vu.nl
Doelgroep
Bachelors preferably in Earth Sciences or Chemistry but also Biology or other Natural Sciences may be possible. This course is open to all Master students with a Biology, Ecology or Chemistry BSc. It is a compulsory course for MSc Ecology – ECT track students and can be followed in combination with ECT I (see AM_1032).

Overige informatie
To take this course, students must register temporarily (bijvakstudent) at the UvA (see course description UvA-site).

External lecturers:
Dr. W.P. de Voogt (UvA)
Dr. J. Parsons (UvA)
prof.dr. R.W.P.M. Laane (Deltares)

Environmental Genomics and Adaptation

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470506 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. ir. T.F.M. Roelofs</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. ir. T.F.M. Roelofs</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. H. Schat, dr. ir. T.F.M. Roelofs</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum, Practicum</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
Students will be able to:
1. Describe different molecular genetic techniques to study gene expression and genomic variation in response to environmental stimuli.
2. Explain how to use these techniques in ecological and physiological research.
3. Analyze experimental data generated by genomics research and knowing the possibilities for follow-up research.
4. Find and analyze genomic data in databases on internet.
5. Describe the functional significance of genomic variation for organisms and populations in natural environments.
6. Characterize the evolutionary consequences of such variation for species abundance, community diversity, and the evolution of speciation.

Inhoud vak
Researchers in ecology and physiology are making extensive use of molecular techniques. Environmental genomics can be applied to advance our understanding of the way organisms functionally respond to changes within their local environment. Such responses may have consequences for species abundance, community diversity, and the evolution of speciation. In this course we will focus on:
Regulation of gene expression. Which genes are turned on in response...
to environmental challenge, and what do they do?
Differences in the molecular basis of fitness among individuals.
Is there intraspecific variation in gene expression in response to
environmental change, and is this variation adaptive?
Furthermore, we will assess evolutionary consequences of genomic
variation. What are the
ecosystem-, community-, and population-level consequences of the
molecular transformations in the genome? Does gene family expansion and
contraction drive speciation, or does the emergence of new gene bodies
and protein domains add to speciation?
We will follow topics covered by chapters in the book `An
Introduction to Ecological Genomics' and include molecular adaptation to
drought, genetic marker development and analytical methods, evolution of
metal tolerance, speciation genetics.
Practical training include a Gene expression experiment, designed and
executed by the students. Also, a computer exercise on transcriptomics
(microarray data) will be performed. These data are extracted from peer-
reviewed scientific papers. Finally, a journal club will be organized,
in which students present a scientific paper on an Ecological Genomics
topic.
The field of ecological genomics moves extremely quickly. Consequently,
topics addressed in the accompanying book will be out of date to some
extent. In order to address up-to-date and stat-of-art knowledge on
ecological genomics topics, specialists in this field will be invited to
give guest lectures.

Onderwijsvorm
Lectures & Guest Lectures
Seminar (journal club) discussing recent literature on Environmental
genomics. Presentation of a scientific paper during this seminar.
Written report summarizing the content of the presented scientific
paper.
Practical training regarding gene expression analysis using Q-PCR
technology.
Written report of Practical: Introduction, Material & Methods, Results
and Discussion.
Computer exercise on transcriptomic data retrieved from public
databases. The Limma package in R will be used predominantly. TIGR Mev
software will be applied to visualize data output.
Self study

Toetsvorm
Assessment of oral presentation of a research paper by a panel of
consisting of course coordinator, junior lecturer and Post-doc.
Standardized forms will be used to retrieve scores for different aspects
of the presentation.
Assessment of written reports on QPCR practical and scientific paper
Mean grade of presentation and written reports will make up 25% of the
final grade.
Written exam consisting of open questions will make up 70%
of final grade. A score of at least 5.5 is required to pass this course.

Literatuur
N. M. van Straalen and D. Roelofs 2011. An Introduction to Ecological

Vereiste voorkennis
BSc level course on molecular biology
Doelgroep
MSc students Biology and Ecology from VU and UvA

Inleenprocedure
Standard via VUnet

Environmental Measuring Techn.

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0005 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Environmental Measuring Techniques

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1041-UvA ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This course is offered by the UvA. See for the description: http://studiegids.uva.nl/web/uva/sgs/nl/c/7903.html

Overige informatie
Coordinators: de Voogt / Kalbitz (UvA).
The course description can be found on the UvA website: http://studiegids.uva.nl/sgs/WebSite.nl.
Course registration via UvA, not VU.

Ethics in Life Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_470707 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 3</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J.T. de Cock Buning</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. J.T. de Cock Buning</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>prof. dr. J.T. de Cock Buning, dr. J.F.H. Kupper</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkgroep</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>
Doel vak
To provide a toolbox of ethical instruments to analyze properly moral problems related (to one's own) research in the life sciences
• To acquire conceptual knowledge of the central concepts in applied philosophy and professional ethics
• To challenge an ethical reflection on one own's life science specialization and to open it for an impartial and constructive discussion
• To exercise a team based project to enter prepare and execute a moral dialogue
• To acquire the necessary skills to handle ethical issues in an accountable manner, as a professional academic beyond one's own inclinations and prejudgments

Inhoud vak
Researchers in life sciences generate the knowledge that builds the future of our society. Therefore, professional academics should be accountable for their decisions, experimental designs and presentation of results. In this short course, the principles of justification will be illustrated with cases of technology ethics and medical ethics. The way an ethical review committee on animal research works, is simulated by a role play exercise on an actual research protocol. Finally, as a small group training project, an ethical dialogue is prepared and executed together with another team.

Onderwijsvorm
Ethics in the Life Sciences is a fulltime course of four weeks (3 ECTS). The total study time is 80 hours.
The different elements have the following study time:
• Lectures: 13 hours
• Work groups: 17 hours
• Group assignment: 24 hours
• Exam: 2 hour
• Presentation: 4 hours
• Self working (reading in the first week): 20 hours
Please note that attendance to the work group meetings is compulsory. Attendance to the lectures is highly recommended. In our experience, relying on self-study alone is insufficient to apply the theory of the lectures in the assignments of the workgroups, and to pass the exam.

Toetsvorm
• Degree of intellectual participation in the workgroups (10%)
• exam (50%) has to be passed
• written and verbal execution of the ethical dialogue (40%)

Literatuur
Available on Blackboard

Vereiste voorkennis
Bsc Biology, Biomedical Sciences, Psychology with profile Biological Psychology or Neuropsychology

Doelgroep
Compulsory course in all FALW Master programmes, except Health Sciences and Neuro Sciences
Overige informatie
Lectures in English, part of the workgroups are in Dutch. All presentations and plenary discussions in English. In order to maximize the experience of differences in values and preferences, and this increase meaningful ethical inquiry we will place you randomly in the workgroups. Placement will be communicated after the introduction lecture.

Evolution of Species Interaction

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0006 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Evolution of Species Interactions

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1017-UvA ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
Objectives of the course Evolution of Species Interaction: To analyse phylogenetic patterns of interacting species (endosymbiont-host, plant-pollinator, and insect herbivore-plant associations); to analyse the major traits that maintain these interactions and how these traits evolve; to formulate hypotheses how species interactions evolve and how this might lead to new species. The course focusses on chemical signals in intra- and interspecific communication (chemical ecology).

Inhoud vak
Topics include advanced phylogenetic techniques, phylo-/bio-geography, analysis of (in)congruence between phylogenetic trees of interacting groups of species, character trait evolution, intra- (sex pheromones) and interspecific (secondary plant compounds) chemical communication, evolution of signalling systems (receptor proteins), phylogenetic conservatism in host use, evolution of specialisation (evolutionary dead-end), and sexual selection and speciation models. Relevant techniques will be demonstrated or practiced in small experiments [e.g., behavioural assays, gas-chromatography (GC), mass spectrometry, electrophysiology (both olfaction and taste recording from insect sensory organs) and coupled GC-electrophysiology to aid the identification of biologically active compounds].

Onderwijsvorm
Discussion of literature & poster (1.5 EC), lectures (3 EC) and practicals/demonstrations (1.5 EC)

Toetsvorm
Written examination (essay) 70%, practicals 20% and attitude 10%

Literatuur
Reader (ca. 10 euro)

Vereiste voorkennis
Bachelor Biology

Overige informatie
Co-ordinator: dr. P. Roessingh
Science Park 904 kamer C2.209
+31 20 5257732
Lecturers: prof. dr. S.B.J. Menken, dr Toby Kiers (VU) and dr. P. Roessingh.
Registration via studieweb (UvA, at least 4 weeks before the start of the semester) and VUnet (VU, at least 4 weeks before the start of the period).
The course schedule will be published on Blackboard and on the website www.student.uva.nl (choose the specific master).
Minimum 4, maximum 24 students.
A supplementary programme for foreign students is available (mandatory for major projects).
Location: Science Park Amsterdam.

Evolutionary Dynamics

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1019 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Inhoud vak
This course is delivered at the UvA. For more information see this link.

Evolutionary Dynamics

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0007 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 4+5+6</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>
Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Experimental Design and Analysis

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM 470505 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Examiner</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. G.J.J. Driessen, J. Duivenvoorden, dr. P.H. Vos</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Computerpracticum</td>
</tr>
<tr>
<td>Niveau</td>
<td>500</td>
</tr>
</tbody>
</table>

Doel vak
The final attainment levels of this course, include that students:
- Are acquainted with possible experimental designs and can select the most suitable design depending on experimental objective and hypothesis
- Are acquainted with possible statistical analyses, understand the theory and the assumptions underlying the various analyses and can test the underlying assumptions
- Can select the most suitable statistical analysis depending on the design chosen and the statistical assumptions
- Can interpret the chain of hypotheses, design and analysis to validate hypotheses on-field-conditions and model behaviour

Inhoud vak
A proper experimental design combined to a suitable statistical analysis is essential to -biological- science, even though it is considered by many as a necessary evil. In this course, the whole chain of hypothesis and design to analysis and interpretation is covered to allow students to apply a range of statistical techniques independently. The application and implementation of the techniques (in R) is the basis. Possible experimental designs are discussed in relation to specific biological questions and hypotheses. The application of statistical analysis is treated in relation to these designs. Theory and especially the assumptions underlying the test are treated to the extent that this information is necessary to apply the tests properly. Both -combinations of- regression and analysis of variance techniques and multivariate analysis techniques like unconstrained and constrained ordination and meta analysis are dealt with. Other biological questions like classification issues, working with large datasets, data reduction and multiple response variables are discussed.

Onderwijsvorm
As application is central to this course, case studies, assignments and working with real biological data is the core of this course. Starting of with the research question, hypothesis and the lab/field/model
situation a proper design and statistical analysis will be discussed. A specific case study, explained by the researcher who performed that particular research, is used to illustrate this chain of arguments. Theory, assumptions and tests are all treated in the context of these case studies and are coupled directly to the case study and subsequent assignments. The course is finalised with an extensive case study, to which the theory is applied. This set-up translates into 30 contact hours for lectures, 4 contact hours for a practical on the first assignment and 20 contact hours for feedback on the assignments.

Toetsvorm
Report on the final case study (100%)

Literatuur
Quinn, G.P. and M.J. Keough (2002), Experimental design and data analysis for biologists Cambridge University Press

This literature is complimented by a syllabus, explanations on assignments, answers to the assignments, lecture handouts, background information, background notes on Blackboard.

Vereiste voorkennis
Methodology and statistics 1 and 2 or equivalent statistics courses. This implies that we require students to understand the interpretation of P-values, type I and type II errors and statistical hypotheses testing in general. In addition, students are required to have understanding on t-tests (paired and unpaired), linear regression and one-way ANOVAs.

Doelgroep
The course is compulsory for MSc Ecology students at the VU doing the Ecology and Evolution or the Environmental Chemistry and Toxicology specialization and for UvA students doing the Ecology and Evolution specialization of the master Biological Science. The course is also open for master students in Biology, Ecology or Earth Sciences and PhD students at the VU and UvA universities with a deficiency in experimental design and statistics.

Overige informatie
The course is organized by the Department of Ecological Science at the VU and the Institute for Biodiversity and Ecosystem Dynamics of the UvA. All contact hours are at VU University.
Literature Survey E&E

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1131 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>12.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
</tbody>
</table>

Doel vak
For master students in Ecology and Evolution it is required to carry out a thesis based on a literature survey (12 ec). The aim is to demonstrate the ability to efficiently process material in a given field and evaluating this critically.

Inhoud vak
The literature survey can focus on a fundamental ecological question but may also take a more applied ecological approach. The topic and research question are free of choice.

Prior to participating in any thesis or literature survey, both student and faculty staff member and external supervisor (if applicable) involved should fill out a written application and agreement form. This form (and others) can also be downloaded from:

Onderwijsvorm
Every literature survey has to be approved by the master coordinator in advance (on behalf of the examination board). Therefore you should hand in a proposal that you have discussed with the faculty staff member and/or external supervisor.

Consult the manual for the literature survey for further details concerning writing of the proposal and the thesis.

Toetsvorm
At the end of the literature survey the student gives an oral presentation of the work in the Department of Ecology. The work and presentation will be assessed by the VU supervisor in consultation with the external supervisor, if applicable.

Literature theses will be will be assessed according to the following categories:
A. Execution (25%)
Literatuur
Selected papers

Doelgroep
Students in MSc Ecology specialization Ecology and Evolution

Overige informatie
In order to successfully start up and complete the literature thesis it is of major importance to read carefully the manual on:

Literature Survey ECT

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1132 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 4+5+6</td>
</tr>
<tr>
<td>Credits</td>
<td>12.0</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
</tbody>
</table>

Doel vak
For master students in Environmental Chemistry and Toxicology, it is required to carry out a thesis based on a literature survey (12 ec). The aim is to demonstrate the ability to efficiently process material in a given field and evaluate this critically.

Inhoud vak
The literature survey can focus on a fundamental question in environmental chemistry and/or environmental toxicology but may also take a more applied approach. The topic and research question are free of choice, but should be discussed before starting with the programme coordinator (see below).

Prior to participating in any thesis or literature survey, both student and faculty staff member and external supervisor (if applicable) involved should fill out a written application and agreement form. This form (and others) can also be downloaded from:

Onderwijsvorm
Every literature survey has to be approved by the master coordinator in advance (on behalf of the examination board). Therefore you should hand in a proposal that you have discussed with the faculty staff member and/or external supervisor.
Consult the manual for the literature survey for further details concerning writing of the proposal and the thesis.

Toetsvorm
At the end of the literature survey the student gives an oral presentation of the work at the Institute for Environmental Studies. The work and presentation will be assessed by the VU supervisor in consultation with the external supervisor, if applicable.

Literature theses will be assessed according to the following categories:
A. Execution (25%)
B. Thesis (50%)
C. Oral Presentation (25%)

Literatuur
Selected papers

Doelgroep
Students in MSc Ecology specialization Environmental Chemistry and Toxicology

Intekenprocedure
In order to successfully start up and complete the literature thesis it is of major importance to read carefully the manual at: http://www.falw.vu.nl/nl/onderzoek/ecological-sciences/internships-at-the-institute/index.asp

Overige informatie
For more information, contact the MSc Ecology - ECT coordinator Prof.dr.ir Juliette Legler, room A645, tel 020 5989516, Juliette.legler@vu.nl

Mass Spectrometry

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>X_435604 (435604)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 2</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Faculteit der Exacte Wetenschappen</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Inhoud vak

Overige informatie
Registration via https://www.sis.uva.nl is mandatory 4 weeks before the start of the Semester.

Masterclasses in Ecology and Evolution

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1016 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Doel vak
To obtain a broad overview of the latest research in ecology and evolution
- To learn to critically evaluate scientific research articles
- To practice skills of scientific argumentation and discussion
- Learning to discuss these topics with leading scientists in the field

Inhoud vak
Being able to participate in discussion is an important skill for scientists. It requires the ability to combine theoretical and empirical knowledge as well as a critical view on the arguments put forward by others. The best way to improve these skills is to practice them under supervision of senior scientists. In this course students are trained to discuss the important topics in Ecology and Evolution with top scientists in the world, in the form of a masterclass (described below). In doing so, students will attend seminars from these internationally renowned scientists in the Nature of Life meetings organized by the Institute of Ecological Sciences (VU) and in the series of IBED lectures organized by the Institute for Biodiversity and Ecosystem Dynamics (UvA). Both series are organized on a monthly basis throughout the year (except the summer period). The topics for the seminars cover the whole spectrum of ecology and evolution. An overview of upcoming and previous seminars can be found at www.falw.vu.nl/nl/onderzoek/ecological-sciences/nature-of-life-meetings/index.asp and www.science.uva.nl/ibed-agenda/see.cfm. Students must attend six masterclasses during the 2-year programme. Students may attend more theme lectures on a facultative basis, subject to availability.

Onderwijsvorm
In preparation for each masterclass, several recent papers by the guest speaker will be studied and extensively discussed during a tutorial meeting with staff members of the Institute of Ecological Sciences or of the Institute for Biodiversity and Ecosystem Dynamics. Students then participate in a discussion meeting with the speaker (the actual masterclass), and finally they attend the seminar as part of the course. Students are required to participate actively in the discussion during the tutorials, masterclass and the seminar. The total number of contact hours (including lectures and discussions) is 30, the remaining time is spent on preparation.

Toetsvorm
Factors which count for the final grade:
For each masterclass: active participation, theoretical insight, and argumentation of the students in the tutorial meeting, masterclass and seminar: 100%
Students pass after 6 satisfactorily participated masterclasses.

Literatuur

<table>
<thead>
<tr>
<th>Voertaal</th>
<th>Engels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. J. Ellers</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. J. Ellers</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Werkcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>
Primary literature and recent articles by the guest speakers, to be announced at least one week before each masterclass.

Vereiste voorkennis
BSc Biology from a Dutch University. Students with a BSc in Earth Sciences, Social Geography, Beta/Gamma, and international BA's with Nuffic accreditation can be admitted, but extra elements can be obligatory.

Doelgroep
Master students in Biology and Ecology (from both the Ecology and Evolution as well as the Environmental Chemistry and Toxicology specializations) at the VU and master students from the Biological Sciences specialization Ecology and Evolution at the UvA.

Overige informatie
Location: VU University Amsterdam, De Boelelaan 1085 Amsterdam and University of Amsterdam, Science Park 904 Amsterdam

Microbial Ecology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0008 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Research Project Ecology and Evolution 1

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1100 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Doel vak
The aims of the master's placement are:
- The student learns to independently conduct scientific research.
- The student is able to independently find scientific information and to evaluate this for the benefit of his or her own research question.
- The student is able to apply scientific methods and knowledge, to answer research questions and to generate evidencebased knowledge.
- The student is able to formulate a research question, to choose, to implement and to evaluate the (appropriate) research method, and to phrase the obtained results in a scientific report.
- The student is able to cooperate with researchers of various
disciplines.
• The student is able to write a scientific report of the research on
 the level of peer-reviewed academic journals.
• The student is able to orally present the research results and to
discuss the findings.
• The student obtains a good impression of a potential future field of
career.

Inhoud vak
The two research projects in the Ecology and Evolution programme serve
to get students acquainted and experienced with the practice of
ecological research. Both research projects should thus reside in
Ecology. If you have 12 ec in elective courses in your programme both
research projects together will have to amount up to 75 ec. If you have
18 ec in elective courses the total study load is 69 ec. The shortest
project should at least be 30 ec.

The first research project during your MSc Ecology and Evolution must
take place at the Department of Ecological Science at the VU, or at the
Institute for Bioversity and Ecosystem Dynamics at the UvA.
For research projects at the Ecology department of the VU check the
website:
www.falw.vu.nl/nl/onderzoek/ecological-sciences/internships-at-the-
institute.

If you want to do a project outside the VU you may look for internships
at the websites of other Dutch universities or research institutes, for
example: NIOO (fundamental ecological research), NIOZ (marine ecology),
ALterra (applied and environmental ecology), RIVM (applied and
environmental ecology), SOVON (avian ecology), but also at the sites of nature conservation organisations
such as Natuurmonumenten, Staatbosbeheer, or regional authorities
(Provincie and Waterschap).
However, organisations for the conservation of specific species (f.e.
butterflies, dolphins, tigers, primates, etc.) will generally not be
qualified enough. Research projects/internships in commercial companies
are generally also not accepted, since commercial and educational
interests often are quite different. Projects at universities or
research institutes outside the Netherlands can also be accepted
provided they are of sufficient academic quality.

In all cases: take care that you will be working on an ecological
research question and that you will be able to collect enough reliable
data to write a scientific report in the end. Purely monitoring or
inventory projects are not of a masters’ level and will not be allowed.

Onderwijsvorm
A Placement Manual for Research Projects in the MSc Ecology can be
obtained at:

This document contains the protocols, guidelines for proposals and
reports and application and assessment forms, etc. needed to
successfully complete a research project.

IT IS VERY IMPORTANT to read this document carefully in order to avoid
unpleasant experiences during the progress of the placement. Every
research project or literature study has to be approved by the master
Toetsvorm
At the end of the project a scientific report of the work has to be written in English an oral presentation has to be given also in English. The final grade will be determined by the VU supervisor and VU second assessor in consultation with the external supervisor, if applicable. It is based on the following categories: attitude (pass/fail), execution (20%), presentation (20%) and report (60%).

Literatuur
Selected papers

Vereiste voorkennis
You are not allowed to start a research project before having obtained already 18 ec in master courses.

Doelgroep
MSc Ecology specialization Ecology and Evolution

Intekenprocedure
See placement manual at:

Overige informatie
The Placement Manual for Research Projects in the MSc Ecology can be obtained at:

Research Project Ecology and Evolution II

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1114 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. G.J.J. Driessen</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Doel vak
The aims of the master's placement are:
• The student learns to independently conduct scientific research.
• The student is able to independently find scientific information and to evaluate this for the benefit of his or her own research question.
• The student is able to apply scientific methods and knowledge, to answer research questions and to generate evidencelbased knowledge.
• The student is able to formulate a research question, to choose, to implement and to evaluate the (appropriate) research method, and to phrase the obtained results in a scientific report.
• The student is able to cooperate with researchers of various disciplines.
• The student is able to write a scientific report of the research on
the level of peer-reviewed academic journals.
• The student is able to orally present the research results and to discuss the findings.
• The student obtains a good impression of a potential future field of career.

Inhoud vak
The two research projects in the Ecology and Evolution programme serve to get students acquainted and experienced with the practice of ecological research. Both research projects should thus reside in Ecology. If you have 12 ec in elective courses in your programme both research projects together will have to amount up to 75 ec. If you have 18 ec in elective courses the total study load is 69 ec. The shortest project should at least be 30 ec.

The first research project during your MSc Ecology and Evolution must take place at the Department of Ecological Science at the VU, or at the Institute for Bioversity and Ecosystem Dynamics at the UvA.
For research projects at the Ecology department of the VU check the website:

If you want to do a project outside the VU you may look for internships at the websites of other Dutch universities or research institutes, for example: NIOO (fundamental ecological research), NIOZ (marine ecology), ALTERRA (applied and environmental ecology), RIVM (applied and environmental ecology), SOVON (avian ecology), but also at the sites of nature conservation organisations such as Natuurmonumenten, Staatsbosbeheer, or regional authorities (Provincie and Waterschap).
However, organisations for the conservation of specific species (f.e. butterflies, dolphins, tigers, primates, etc.) will generally not be qualified enough. Research projects/internships in commercial companies are generally also not accepted, since commercial and educational interests often are quite different. Projects at universities or research institutes outside the Netherlands can also be accepted provided they are of sufficient academic quality.

In all cases: take care that you will be working on an ecological research question and that you will be able to collect enough reliable data to write a scientific report in the end. Purely monitoring or inventory projects are not of a masters’ level and will not be allowed.

Onderwijsvorm
A Placement Manual for Research Projects in the MSc Ecology can be obtained at:

This document contains the protocols, guidelines for proposals and reports and application and assessment forms, etc. needed to successfully complete a research project.

IT IS VERY IMPORTANT to read this document carefully in order to avoid unpleasant experiences during the progress of the placement. Every research project or literature study has to be approved by the master coordinator in advance.
Toetsvorm
At the end of the project a scientific report of the work has to be written in English and an oral presentation has to be given also in English. The final grade will be determined by the VU supervisor and VU second assessor in consultation with the external supervisor, if applicable. It is based on the following categories: attitude (pass/fail), execution (20%), presentation (20%) and report (60%).

Literatuur
Selected papers

Vereiste voorkennis
You are not allowed to start a research project before having obtained already 18 ec in master courses.

Doelgroep
MSc Ecology specialization Ecology and Evolution

Intekenprocedure
See Placement Manual at:

Overige informatie
The Placement Manual for Research Projects in the MSc Ecology can be obtained at:

Research Project Environmental Chemistry and Toxicology I

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1108 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Doel vak
The aims of the master’s placement are:
• The student learns to independently conduct scientific research.
• The student is able to independently find scientific information and to evaluate this for the benefit of his or her own research question.
• The student is able to apply scientific methods and knowledge, to answer research questions and to generate evidence-based knowledge.
• The student is able to formulate a research question, to choose, to implement and to evaluate the (appropriate) research method, and to phrase the obtained results in a scientific report.
• The student is able to cooperate with researchers of various disciplines.
• The student is able to write a scientific report of the research
on the level of peer-reviewed academic journals.

- The student is able to orally present the research results and to discuss the findings.
- The student obtains a good impression of a potential future field of career.

Inhoud vak
The two research projects in the MSc Environmental Chemistry and Toxicology specialization serve to get students acquainted and experienced with the practice of research in environmental chemistry and environmental toxicology. Students are required to do one research project in environmental chemistry (AM_1108), and one in environmental toxicology (AM_1113). Each research projects is 30 Ec. One of the projects may be extended by 6 Ec by substituting an elective course. The first research project during your MSc Ecology – ECT must take place at the Institute for Environmental Studies or Department of Ecological Sciences at the VU, or at the Institute for Biodiversity and Ecosystem Dynamics at the UvA.

For research projects at the VU, contact the coordinator or check the website: www.falw.vu.nl/nl/onderzoek/ecological-sciences/internships-at-the-institute.

If you would like to do a project outside the VU you may look for internships at the websites of other Dutch universities or research institutes, for example: KWR or Waternet (applied water research), NIOO (fundamental ecological research), NIOZ (marine ecology), IMARES (fisheries and sea research), ALterra (applied and environmental ecology), RIVM (applied and environmental ecology), Deltares (applied environmental sciences), but also at the sites of nature conservation organisations such as Natuurmonumenten, Staatsbosbeheer, or regional authorities (Provincie and Waterschap). Projects at universities or research institutes outside the Netherlands can also be accepted provided they are of sufficient academic quality.

In all cases: take care that you will be working on either an environmental chemistry or environmental toxicology research question and that you will be able to collect enough reliable data to write a scientific report in the end. Purely monitoring or inventory projects will not be allowed.

Onderwijsvorm
A Placement Manual for Research Projects in the MSc Ecology can be obtained from the master coordinator (g.j.j.driessen@vu.nl). This document contains the protocols, guidelines for proposals and reports and application and assessment forms, etc. needed to successfully complete a research project. It is very important to read this document carefully in order to avoid unpleasant experiences during the progress of the placement. Every research project or literature study has to be approved by the master coordinator in advance.

Toetsvorm
At the end of the project a scientific report of the work has to be written in English an oral presentation has to be given also in English. The final grade will be based on the following categories: attitude (pass/fail), execution (20%), presentation (20%) and report (60%).

Vereiste voorkennis
You are not allowed to start a research project before having obtained already 18 ec in master courses.
Aanbevolen voorkennis
The MSc course Experimental Design and Analysis (AM_470505) is strongly recommended.

Doelgroep
MSc Ecology - ECT students

Overige informatie
For more information, please contact: Prof. dr. ir J. Legler, Room A-645, 020-5989516, juliette.legler@vu.nl

Research Project Environmental Chemistry and Toxicology II

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1113 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>30.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Examinator</td>
<td>prof. dr. ir. J. Legler</td>
</tr>
<tr>
<td>Niveau</td>
<td>600</td>
</tr>
</tbody>
</table>

Doel vak
The aims of the master’s placement are:
- The student learns to independently conduct scientific research.
- The student is able to independently find scientific information and to evaluate this for the benefit of his or her own research question.
- The student is able to apply scientific methods and knowledge, to answer research questions and to generate evidence-based knowledge.
- The student is able to formulate a research question, to choose, to implement and to evaluate the (appropriate) research method, and to phrase the obtained results in a scientific report.
- The student is able to cooperate with researchers of various disciplines.
- The student is able to write a scientific report of the research on the level of peer-reviewed academic journals.
- The student is able to orally present the research results and to discuss the findings.
- The student obtains a good impression of a potential future field of career.

Inhoud vak
The two research projects in the MSc Environmental Chemistry and Toxicology specialization serve to get students acquainted and experienced with the practice of research in environmental chemistry and environmental toxicology. Students are required to do one research project in environmental chemistry (AM_1108), and one in environmental toxicology (AM_1113). Each research project is 30 Ec. One of the projects may be extended by 6 Ec by substituting an elective course. The first research project during your MSc Ecology – ECT must take place at the Institute for Environmental Studies or Department of Ecological Sciences at the VU, or at the Institute for Biodiversity and Ecosystem Dynamics at the UvA.
For research projects at the VU, contact the coordinator or check the website:

If you would like to do a project outside the VU you may look for internships at the websites of other Dutch universities or research institutes, for example: KWR or WaterNet (applied water research), NIOO (fundamental ecological research), NIOZ (marine ecology), IMARES (fisheries and sea research), ALTERRA (applied and environmental ecology), RIVM (applied and environmental ecology), Deltares (applied environmental sciences), but also at the sites of nature conservation organisations such as Natuurmonumenten, Staatsbosbeheer, or regional authorities (Provincie and Waterschap). Projects at universities or research institutes outside the Netherlands can also be accepted provided they are of sufficient academic quality. In all cases: take care that you will be working on either an environmental chemistry or environmental toxicology research question and that you will be able to collect enough reliable data to write a scientific report in the end. Purely monitoring or inventory projects will not be allowed.

Onderwijsvorm
A Placement Manual for Research Projects in the MSc Ecology can be obtained from the master coordinator (g.j.j.driessen@vu.nl). This document contains the protocols, guidelines for proposals and reports and application and assessment forms, etc. needed to successfully complete a research project. It is very important to read this document carefully in order to avoid unpleasant experiences during the progress of the placement. Every research project or literature study has to be approved by the master coordinator in advance.

Toetsvorm
At the end of the project a scientific report of the work has to be written in English an oral presentation has to be given also in English. The final grade will be based on the following categories: attitude (pass/fail), execution (20%), presentation (20%) and report (60%).

Vereiste voorkennis
You are not allowed to start a research project before having obtained already 18 ec in master courses.

Aanbevolen voorkennis
The MSc course Experimental Design and Analysis (AM_470505) is strongly recommended.

Doelgroep
MSc Ecology - ECT students

Overige informatie
For more information, please contact: Prof. dr. ir J. Legler, Room A-645, 020-5989516, juliette.legler@vu.nl

Scientific Writing in English

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_471023 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
</tbody>
</table>
The aim of this course is to provide Master’s students with the essential linguistic know-how for writing a scientific article in English that is well organized idiomatically and stylistically appropriate and grammatically correct. At the end of the course students
- know how to structure a scientific article;
- know what the information elements are in parts of their scientific article;
- know how to produce clear and well-structured texts on complex subjects;
- know how to cite sources effectively;
- know how to write well-structured and coherent paragraphs;
- know how to construct effective sentences;
- know what collocations are and how to use them appropriately;
- know how to adopt the right style (formal style, cohesive style, conciseness, hedging)
- know how to avoid the pitfalls of English grammar;
- know how to use punctuation marks correctly;
- know what their own strengths and weaknesses are in writing;
- know how to give effective peer feedback.

Final texts may contain occasional spelling, grammatical or word choice errors, but these will not distract from the general effectiveness of the text.

The course will start with a general introduction to scientific writing in English. Taking a top-down approach, we will then analyse the structure of a scientific article in more detail. As we examine each section of an article, we will peel back the layers and discover how paragraphs are structured, what tools are available to ensure coherence within and among paragraphs, how to write effective and grammatically correct sentences and how to choose words carefully and use them effectively.

Topics addressed during the course include the following:
- Structuring a scientific article
- Considering reading strategies: who is your readership? How do they read your text? What do they expect? How does that affect your writing?
- Writing well-structured and coherent paragraphs
- Composing effective sentences (sophisticated word order, information distribution).
- Arguing convincingly – avoiding logical fallacies
- Academic tone and style: hedging – why, how, where?
- Using the passive effectively
- Understanding grammar (tenses, word order, etc.)
- Understanding punctuation
- Referring to sources: summarising, paraphrasing, quoting (how and when?)
- Avoiding plagiarism
- Vocabulary development: using appropriate vocabulary and collocations

Onderwijsvorm
Scientific Writing in English is an eight-week course and consists of 4 contact hours during the first week and 2 contact hours a week for the rest of the course. Students are required to spend at least 6 to 8 hours of homework per week. They will work through a phased series of exercises that conclude with the requirement to write several text parts (Introduction, Methods or Results section, Discussion and Abstract). Feedback on the writing assignments is given by the course teacher and by peers.

Toetsvorm
Students will receive the three course credits when they meet the following requirements:
- Students hand in three writing assignments (Introduction, Methods or Results, Discussion) and get a pass mark for all writing assignments;
- Students provide elaborate peer feedback;
- Students attend all sessions;
- Students are well prepared for each session (i.e. do all homework assignments);
- Students actively participate in class;
- Students do not plagiarise or self-plagiarise.

Literatuur

Intekenprocedure
General enrollment information:
The registration for this course consists of two steps:
(1) Students should register for the course through VUnet;
(2) After the VUnet registration, students should register for a specific Blackboard group.

Each master programme has one or more designated groups. This designated group offers the best option for the student in terms of study load and schedule. Each semester, one or more open/general groups take place (with a minimum of 18 participants), for which students may register instead of the designated group for their master programme, for example in case of schedule difficulties or because they have to re-sit the course. Students are advised to consult their schedule carefully, since overlap may occur.

Important: Each group has a minimum of 18 and maximum of 24 participants, so students should register on time to ensure a place in one of the (designated) groups.

Please note that even though the VUnet registration is a requirement for the course, only a Blackboard registration in the appropriate group will give you access to the sessions of the course. You will be expected to attend all sessions in the group for which you have a Blackboard registration.
Instructions for Blackboard enrollment:
- An overview of all SWIE groups for the academic year 2014 - 2015 is available under "Course Documents".
- On rooster.vu.nl, the schedule for each group (time and room) can be found under the course name (also available under "Course Documents").
- Based on the group overview and the schedule, please check which one of the designated groups for your master programme you prefer (please check if the course does not coincide with other (elective) courses).
- Go to "Group enroll" and select your master programme.
- Enroll in the group you have selected.

Separation Sciences

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>X_435609 (435609)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Faculteit der Exacte Wetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. H. Lingeman</td>
</tr>
<tr>
<td>Examinator</td>
<td>dr. H. Lingeman</td>
</tr>
<tr>
<td>Docent(en)</td>
<td>dr. H. Lingeman</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege</td>
</tr>
<tr>
<td>Niveau</td>
<td>400</td>
</tr>
</tbody>
</table>

Doel vak
Getting acquainted with the theory and practice of the main techniques in modern analytical separation science.

Inhoud vak
The topics discussed comprise the fundamentals, theory and practice of gas chromatography, the various modes of liquid chromatography, capillary-based electrophoretic approaches as well as the hyphenation of the various separation systems with mass spectrometry and other sensitive and selective detection devices.

Onderwijsvorm
Lectures and tutorials. Students have to summarize and present an (assigned) recent article on separation science.

Toetsvorm
Written examination and a mark for the article presentation.

Literatuur
Hands-outs (electronically available).

Vereiste voorkennis
Basic knowledge of biochemistry, chromatography, electrophoresis and mass spectrometry.

Aanbevolen voorkennis
Basic knowledge of biochemistry, chromatography, electrophoresis and mass spectrometry.

Doelgroep
Doel vak
Students will be able to:
- Underpin the importance of ecological interactions (trophic and non-trophic) between soil organisms-plants-aboveground fauna (and vice versa)
- Critically evaluate and investigate the relevant interactions between soil-soil organisms, soil-vegetation, soil organisms-vegetation, vegetation-herbivores (and vice versa)
- Critically evaluate and investigate the relevant functional traits that underlie ecological interactions between the soil-subsystem (brown web) and plant-subsystem (green web)
- In the field: apply different techniques to survey the soil-subsystem and plant-subsystem, and to sample soil and soil organisms
- In the laboratory: carry out ecological and biochemical analyses relevant to brown-green web interactions, with emphasis on organismal traits.

Inhoud vak
A hot theoretical topic in Ecology concerns the interdependency of the brown web (belowground) and green web (aboveground) compartments. This comprises key conceptual issues relating to interactions between brown and green communities, the importance of functional traits to understand these interactions within and between these communities, and the processes carried out by each component. These concepts can be applied to current critical questions, such as the regulation and function of biodiversity, vegetation development, and consequences of human-induced global change, e.g. biological invasions, extinctions, nitrogen deposition, land use change and climate change.
In this course we will focus theoretically on the following subjects:
- The brown and green food web: biotic interactions and regulators
- Plant species and plant trait control of brown web interactions and processes
- Belowground consequences of green food web interactions
- Completing the circle: how brown web effects are manifested aboveground
- The regulation and function of biological diversity, with a focus on functional traits of plants, animals and microbes
- Global change phenomena in an aboveground-belowground context
These subjects are discussed in various papers (see literature) that will be used as the basic literature for the seminars given by the (guest) lecturers. In the second week, students will perform experiments on location (in Zevenaar, The Netherlands) where brown-green web interactions in subarctic ecosystems are currently being studied, with emphasis on (a) design and statistical treatment of experiments on soil-plant-fauna interactions, (b) techniques to identify soil organisms and analyse soil processes, biochemistry and vegetation development.

Onderwijsvorm
Individual performance in critical group discussions about important theory based on these papers/chapters, a preliminary presentation about the own research project, and a final presentation about background, design and (synthesis of) results of own research project.

Toetsvorm
Individual performance in critical group discussions about important theory based on these papers/chapters, a preliminary presentation about the own research project, and a final presentation about background, design and (synthesis of) results of own research project.

Literatuur
Selected literature will be made available via BB, which includes recent key papers in international journals and extracts from Richard D. Bardgett and David A. Wardle (2010): "Aboveground-Belowground Linkages; Biotic interactions, ecosystem processes, and global change". Oxford Series in Ecology and Evolution.

Vereiste voorkennis
To attend this course their will be costs involved. A part of the expenses for accommodation at Zevenaar have to be covered by the MSc-students themselves.

Doelgroep
MSc students with focus on ecology.

Spatial Processes in Ecology

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AMU_0009 ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 1</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>

Inhoud vak
This is an UvA course. For the course description, please visit http://studiegids.uva.nl/

Spatial Processes in Ecology and Evolution

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>AM_1039-UvA ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Fac. der Aard- en Levenswetenschappen</td>
</tr>
</tbody>
</table>
Inhoud vak
This course is offered by the UvA. See for the course description:
http://studiegids.uva.nl/web/uva/sgs/nl/c/8773.html

Overige informatie
Coordinator: M. Boerlijst (UvA).
The course description can be found on the UvA website:
http://studiegids.uva.nl/sgs/WebSite_nl.
Course registration via UvA, not VU.