The one-year (60EC) programme Human Movement Sciences: Sport, Exercise & Health aims to teach students to collect and develop knowledge and understanding of human movement and to be able to apply this in the sports-, exercise- and health-related fields. The programme comprises two main tracks, namely “Sport” and “Health”. Given the nature of the study, exercise will form a key part of both tracks. Both tracks are not strictly divided programmes and overlaps and switches to compose the ideal programme for each individual student are absolutely possible. The programme mainly aims at preparing students for occupations requiring a scientific background, and to a lesser extent at the preparation for a research career, although individual tracks focusing on this are feasible and possible.

Next to the two tracks, the programme offers a limited number of students (we have approximately 15 -20 places available each year), the opportunity to acquire an accreditation for teaching in Higher Education. The programme “Teaching in Higher Education” amounts to 24 EC, which can partially be incorporated into the regular programme. The programme also intends to establish links to certifications in health and exercise such as those the recognized certifications of the American College of Sports Medicine (Registered Clinical Exercise Physiologist®, Exercise Specialist® (ES) en ACSM Health/Fitness Instructor®).

The MSc diploma, when combined with a small number of additional courses will allow students acces to the Postgraduate programme for Practical Sports Psychologist. This Postgraduate programme will take approximately one year (full time) and leads to accreditation as “Sportpsycholoog Vereniging voor Sportpsychologie in Nederland (r)”

Admission to the Master’s programme

Students with a bachelor’s degree in Human Movement Sciences (either from VU University or the RUG) or Health Sciences with a major Human Movement Sciences (UM) or Medical Sciences with a major Human Movement Sciences (Radboud Universiteit) have direct access to the master’s programme HMS.

The only condition is that the student has made a rough personal planning for the Master’s Programme that has been approved by the Examination Board. Bachelors of studies other than Human Movement Sciences need to meet the requirements mentioned in paragraph: Master’s Programmes for students with a Bachelor degree other than Human Movement Sciences.

Bachelors of Human Movement Sciences are, in principle, free to start the Master Programme at any period of the year. Bachelors of studies other than Human Movement Sciences can only start the Master Programme in September.

Master Programme for students with a Bachelor degree other than Human Movement Sciences

For detailed information on admission requirements and procedures for students with a Bachelor degree other than Human Movement Sciences wanting to follow the Master’s Programme, we refer to the Master’s brochure available at the Programme Secretariat (studiesecretariaat, room G-620) and the internet www.fbw.vu.nl.

The Master’s Programme for these students normally is consistent with the regular Master’s Programme.

Most of the time a student has to follow a Premaster’s Programme before entering the Master’s Programme. Depending on the nature of the Bachelor degree of the student, the elements of the Premaster Programme are determined. The study load for the Premaster Programme may vary from 0 to a maximum of 60 credits.

Overview of the programme

Optional courses

The student can use the Optional credits for:

- Following one or more master courses of the other track or optional courses within the programme, or selected courses from the Research Master’s Programme (note: entry for these courses might be limited);
- Courses from the Bachelor’s programme, provided that the total programme comprises at least 51 EC from the master’s programme.
- Elements of other master’s programmes, either of VU University or another University, provided that the total programme comprises at least 51 EC from the master’s programme.
- Following a Teacher Training Course. Please note that because the Teacher Training Course is 24 EC, it will result in an extended duration of the study. See www.fbw.vu.nl for the Teacher Training Course.
- Participation in one of the SOCRATES-Programmes: Exercise and Sport Psychology, Adapted Physical Activity or Development of Motor Control and Coordination. This will probably lead to extended study duration as well. It is possible that more opportunities will be present in the near future. For more information contact international-and/or master coordinator.
Short-literature review of 6 EC.
-Extension of the internship with 6 credits (total 30 credits).
-Practical internship of 6 EC.

The student submits his free choice elements formally to the Examination Board by means of an approval form. The approval form must be signed by the study advisor.

Approval Form
Although the students are free in choosing elements for the Optional credits, the faculty has certain requirements as to the size and the level of the chosen elements. The Free Subject Choice should, in theory, only consist of study components from the Master’s programme. Study components from the Bachelor’s programme for the Free Subject Choice are only applicable when they are relevant to the Master’s programme. In order to establish this, the student needs to fill out the Approval Form with the element content and rough planning, which has to be signed by the study advisor for approval. In order to prevent disappointments we advise the students to hand in their Approval Forms as early as possible.

Study elements outside the Faculty
The Course and Career Information Centre has copies of all Study Guides of the VU University, and also of other universities. If a student is interested in a course from another university, he consults the appropriate Study Guide, or the internet. In case a course from another faculty requires a tuition fee the costs are, in principle, for the student, except when the faculty deems it is essential that the student follows that course.
Docentenopleiding FBW	1
Docentenopleiding FBW	1
HMS1 Optional Courses	2
HMS1 Health Track	2
HMS1 Obligatory Courses	2
HMS1 Sport Track	2
Vak: 3D-Kinematics	2
Vak: Applied Sport Psychology	4
Vak: Behavioral Concepts in Human Movement Sciences	5
Vak: Biophysical Concepts in Human Movement Sciences	6
Vak: Clinical Exercise Physiology	7
Vak: Coordination Dynamics: principles and clinical applications	8
Vak: Electromyography	10
Vak: Energy Flow Models	11
Vak: Entrepreneurship in Human Movement Sciences	12
Vak: Exercise and Health	13
Vak: Fatigue, Aging and Disuse	14
Vak: Health and Society	15
Vak: History and Theory of Movement Sciences	16
Vak: Intermuscular load Sharing	16
Vak: Maximal Neuromuscular Performance	17
Vak: Neurorehabilitation in the Context of Movement Sciences	19
Vak: Normal and Abnormal Motor Development	20
Vak: Perception for Action	21
Vak: Perceptual-motor Learning	22
Vak: Practical Internship	23
Vak: Psychological Factors in Sport	24
Vak: Rehabilitation: Restoration of Mobility	25
Vak: Research Internship	26
Vak: Short Literature Review	27
Vak: Sport and Society	28
Vak: Sport Biomechanics	29
Vak: Statistics for Experimental Research	30
Vak: Studentbegeleiding	31
Vak: Talent Identification and Development	31
Vak: Teacher Training at the Upper Secondary Level	32
Docentenopleiding FBW

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher Training at the Upper Secondary Level</td>
<td>Ac. Year (September)</td>
<td>24.0</td>
<td>B_DOCENTHBO</td>
</tr>
</tbody>
</table>

HMS1 Optional Courses

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-Kinematics</td>
<td>Period 4</td>
<td>3.0</td>
<td>B_3DKIN</td>
</tr>
<tr>
<td>Applied Sport Psychology</td>
<td>Period 3</td>
<td>3.0</td>
<td>B_APPSPRTPSY</td>
</tr>
<tr>
<td>Clinical Exercise Physiology</td>
<td>Period 3</td>
<td>3.0</td>
<td>B_CLINEXERC</td>
</tr>
<tr>
<td>Electromyography</td>
<td>Period 4</td>
<td>3.0</td>
<td>B_ELECTROMYO</td>
</tr>
<tr>
<td>Entrepreneurship in Human Movement Sciences</td>
<td>Periode 5</td>
<td>6.0</td>
<td>B_ENTREPREN</td>
</tr>
<tr>
<td>Fatigue, Aging and Disuse</td>
<td>Period 5</td>
<td>3.0</td>
<td>B_FATIGUE</td>
</tr>
<tr>
<td>Intermuscular load Sharing</td>
<td>Period 6</td>
<td>3.0</td>
<td>B_INMUSCLOAD</td>
</tr>
<tr>
<td>Neurorehabilitation in the Context of Movement Sciences</td>
<td>Period 4</td>
<td>3.0</td>
<td>B_NEURREHMS</td>
</tr>
<tr>
<td>Perception for Action</td>
<td>Period 4</td>
<td>3.0</td>
<td>B_PERCACTION</td>
</tr>
<tr>
<td>Practical Internship</td>
<td>Ac. Jaar (September)</td>
<td>6.0</td>
<td>B_PRACINTERN</td>
</tr>
<tr>
<td>Rehabilitation: Restoration of Mobility</td>
<td>Period 3</td>
<td>3.0</td>
<td>B_REHABMOB</td>
</tr>
<tr>
<td>Short Literature Review</td>
<td>Ac. Year (September)</td>
<td>6.0</td>
<td>B_SLR</td>
</tr>
<tr>
<td>Sport Biomechanics</td>
<td>Periode 5+6</td>
<td>3.0</td>
<td>B_SPORTBIO</td>
</tr>
<tr>
<td>Statistics for Experimental Research</td>
<td>Period 4</td>
<td>3.0</td>
<td>B_STATEXPRES</td>
</tr>
<tr>
<td>Studentbegeleiding</td>
<td>Ac. Jaar (September)</td>
<td>6.0</td>
<td>B_STDBEG</td>
</tr>
<tr>
<td>Talent Identification and Development</td>
<td>Period 3</td>
<td>3.0</td>
<td>B_TALDEVEL</td>
</tr>
<tr>
<td>Teacher Training at the Upper Secondary Level</td>
<td>Ac. Year (September)</td>
<td>24.0</td>
<td>B_DOCENTHBO</td>
</tr>
</tbody>
</table>

HMS1 Health Track

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
</table>

Vrije Universiteit Amsterdam - Faculteit der Bewegingswetenschappen - M Human Movement Sciences - 2011-2012
HMS1 Obligatory Courses

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Concepts in Human Movement Sciences</td>
<td>Period 1</td>
<td>3.0</td>
<td>B_BEHCONCEPT</td>
</tr>
<tr>
<td>Biophysical Concepts in Human Movement Sciences</td>
<td>Period 1</td>
<td>3.0</td>
<td>B_BIOCONCEPT</td>
</tr>
<tr>
<td>History and Theory of Movement Sciences</td>
<td>Period 1</td>
<td>3.0</td>
<td>B_HTOMS</td>
</tr>
<tr>
<td>Research Internship</td>
<td>Ac. Year (September)</td>
<td>24.0</td>
<td>B_RI</td>
</tr>
</tbody>
</table>

HMS1 Sport Track

Vakken:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Periode</th>
<th>Credits</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Flow Models</td>
<td>Period 2</td>
<td>3.0</td>
<td>B_ENERFLOW</td>
</tr>
<tr>
<td>Maximal Neuromuscular Performance</td>
<td>Period 2</td>
<td>3.0</td>
<td>B_MAXNEUR</td>
</tr>
<tr>
<td>Perceptual-motor Learning</td>
<td>Period 2</td>
<td>3.0</td>
<td>B_PERCML</td>
</tr>
<tr>
<td>Psychological Factors in Sport</td>
<td>Period 2</td>
<td>3.0</td>
<td>B_PSYFACSPRT</td>
</tr>
<tr>
<td>Sport and Society</td>
<td>Period 1</td>
<td>3.0</td>
<td>B_SPORTSOC</td>
</tr>
</tbody>
</table>

3D-Kinematics

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_3DKIN (900632)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. J. Harlaar</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. H.E.J. Veeger</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Computer lab</td>
</tr>
</tbody>
</table>
Course objective
The student is capable to:
• Define and calculate local joint coordinate systems;
• use and understand different calibration methods and their limitations;
• translate technical motion descriptions into clinically relevant units;
• apply the above to experimental data;
• interpret and comment on methods as described in the literature.

Course content
In this course students are introduced to the fundamentals of three-dimensional kinematics, as well as the (more or less) standard application methods.
The course will comprise three separate blocks focusing on:
1. the definition and use of local coordinate systems in the calculation of osteokinematics;
2. the use of technical marker sets as well as the practical implications of data processing, especially correcting for missing markers and;
3. the calculation procedures for obtaining helical axes, needed for the definition of functional axes-based coordinate systems.

The course consists of classes, computer practicals and work group, in which 3D kinematics theory and application will be taught and consequences for research will be discussed.

Form of tuition
Lectures, computer practicals and tutorials
The three computer practicals are linked to in-term assessments. Each practical will contribute for 15% to the final score.

Type of assessment
The assessment consists of:
- three in-term practical assignments, each contributing for 15% of the final score;
- computer test consisting of a matlab based assignment and a literature review (55%)

Course reading
Relevant papers will be listed in Blackboard.

Entry requirements
This course requires proficiency in Matlab and matrix calculation. If there is a deficiency related to Matlab skills, students are strongly advised to take the TUE web-based matlab course that can be found at http://www.imc.tue.nl/
The BSc course "Mechanische Analyse …" is advised.

Remarks
The maximum number of participants in this course is limited to 40.
Applied Sport Psychology

Course objective
The student is capable to:
- critically assess literature about applied sport and exercise psychology on its thesis, content, empirical rigor and applicability
- link applied research to its theoretical background
- initiate applied research and formulate advice in two specific areas of applied sport psychology
- discuss research on applied sport and exercise psychology

Course content
The course “Applied Sport Psychology” provides insight into research on applied aspects of sport and exercise psychology. Following the Association for Applied Sport Psychology this comprises “three interrelated focus areas: Performance Psychology, Health and Exercise Psychology, and Social Psychology.

Health and Exercise Psychology focuses on the application of psychological principles to the promotion and maintenance of health-enhancing behaviors over the lifespan, including play, leisure physical activity and structured exercise, and the psychological and emotional consequences of those behaviors. Researchers in this area also investigate the role of exercise in disease remediation, injury rehabilitation, and stress reduction.

Performance Psychology focuses on research, theory, and practice intended to improve performance in exercise and sport. This area is also concerned with the effects of sport psychology interventions on the well-being of participants in exercise and sport.

Social Psychology focuses on individual and group processes in sport and exercise settings. This area applies social psychological principles in examining factors related to the sport participant, coach, team, and spectator” (see http://appliedsportpsych.org).

The course provides insights into all three domains.

Form of tuition
Contact 12 hours (five lectures/ seminars, in total 10 hours, one practical, 2 hours); self study, practical report and paper, in total 68 hours.

The course literature is presented and critically discussed in the lectures and seminars. A practical is organized to experience and apply ‘performance profiling’ and ‘mental imagery’. After the practical students have to prepare and submit their practical reports.
Furthermore, the students produce a paper on a self-chosen topic (from a list of topics that will be provided in the
course manual) in applied sport and exercise psychology.

Type of assessment
Students produce a paper in groups of two or three students (100% of the final mark). In relation to the Practical, students produce a short practical report (summary). All products must be of sufficient quality to pass the course.

Course reading
- Course manual made available on Blackboard.
- Recent articles and book chapters on applied aspects of sport and exercise psychology (will be provided in the first lecture).

Entry requirements
Students are expected to be familiar with contents of Sport Psychology. It is therefore recommended that students have participated in the course “Psychological Factors in Sport”.

Recommended background knowledge
Students are expected to be familiar with contents of Sport Psychology. It is therefore recommended that students have participated in the course “Psychological Factors in Sport”.

Remarks
Students are expected to be familiar with contents of Sport psychology. It is therefore participation in the Course ‘Psychological Factors in Sport’ is recommended.

Behavioral Concepts in Human Movement Sciences

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_BEHCONCEPT (900662)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 1</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. J.B.J. Smeets</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. P.J. Beek</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar</td>
</tr>
</tbody>
</table>

Course objective
The student is able to describe course aims in formal format, divided in the categories:
- reporting the key behavioral concepts in contemporary Human Movement Science;
- applying these concepts in describing research outcomes;
- judging the (dis)advantage of using a concept in a particular situation.

Course content
Human movement is a complex behavior. To interpret this complex behavior, the scientific literature uses concepts that are rather complex themselves. Examples of such concepts are information, stability, synergy, internal representation and motor programs. In this course, questions such as "What do these concepts mean exactly?" and "How do these concepts help us to understand the behavior we observe?"
are be addressed.

Form of tuition
Amount of hours, divided in:
Lectures ('hoorcolleges') 16
Self study 56
Assignment (Essay) 12

Type of assessment
Essay.

Course reading
Various scientific publications are be used, further information is provided during the course.

Entry requirements
No specific entry requirements.

Remarks
- Essay should have a length of less than 1500 words (excluding references)

Biophysical Concepts in Human Movement Sciences

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_BIOCONCEPT (900663)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 1</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. J.H. van Dieen</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. T.W.J. Janssen</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Course objective
The student knows the mechanical concepts that apply to control of joint position and movement, in particular equilibrium, stability, robustness, performance, and observability.
The student understands these concepts and can explain how they are related to clinical problems and to motor control in patients with joint disorders.
The student knows the physiological concepts of relative workload in sports and clinical research and training, in particular, (sub)maximal force/power generation, (sub)maximal energy expenditure, aerobic/anaerobic metabolism, blood flow, and anaerobic threshold.
The student understands these concepts and can explain how they are related to sports and rehabilitation research and practice.

Course content
In this course the students are acquainted with biophysical concepts that underlie current debates in HMS.
One part of the course deals with biomechanical concepts in particular with (in-)stability of joints and joint movement. Instability is often used in the clinical setting to describe the state of the joint after injury or in degenerative disorders. The term is often poorly defined, which leads to confusion in the communication between disciplines, e.g.
between physiotherapists and orthopedic surgeons. Mechanics and control theory provide a rigorous framework for describing joint function. The relevance of this conceptual framework for the clinical context and the implications for diagnosis and treatment will be discussed.

The other part of the course deals with physiological concepts in particular with the use of relative workload. Relative workload is often used to induce similar loading of persons in sports and clinical studies, either to measure endurance or to induce a certain training stimulus. Relative workloads as percentage of maximal force/power or energy utilization (oxygen uptake) are used in various circumstances. While the choice for a given variable is essential for the result, it will be discussed whether the proper variables are chosen for the specific goals.

Form of tuition
20 contact hours, divided in:
- Lectures 8 * 2 hours
- Assessment 2 hours

The course consists of two series of lectures dealing with biomechanical and physiological concepts respectively. In the first lecture a general introduction will be given. In the second and third lecture of each series, the formal concepts will be introduced and explained and related to the applications in sports and health. After the third lecture of each series, students prepare a group assignment, as a preparation for the exam. The results of the assignments will be discussed in the fourth lecture of each series.

Type of assessment
- written test with open-ended questions.

Course reading
- Research articles and review papers will be made available at the start of the course

Entry requirements
The student should have a basic knowledge and understanding of the human musculoskeletal anatomy and biomechanics and of exercise and muscle physiology.

Clinical Exercise Physiology

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_CLINEXERC (900670)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 3</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. C.C. Foster Jr.</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Practical, Seminar</td>
</tr>
</tbody>
</table>

Course objective
To provide the student with the fundamental knowledge of clinical exercise physiology as a variant of normal exercise physiology, which will enable the student to apply this knowledge in preventive and rehabilitative exercise programs.
Course content
Basic didactic information and laboratory experiences of the effect of pathophysiologic conditions on human energy metabolism and health. The focus will be on organ systems and their linkage to ATP generating pathways and on how this influences skeletal muscle performance. The application is to the use of exercise both diagnostically and as a therapeutic tool. After this course the student will have the fundamental knowledge and skills to use exercise in patients with cardiopulmonary/metabolic disease and to work cooperatively with other health care providers.

Form of tuition
Lecture
Practical laboratory exercises
Directed reading

Type of assessment
Written examination.

Course reading
A selection of articles and practical guide on Blackboard.

Entry requirements
Toegepaste Inspanningsfysiologie.

Coordination Dynamics: principles and clinical applications

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_CLINCORDYN (900666)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. M. Roerdink</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. M. Roerdink</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Computer lab, Practical</td>
</tr>
</tbody>
</table>

Course objective
The student is acquainted with the principles, concepts and methods of coordination dynamics, as used in the study of basic and pathological movements. The student can explain these aspects of coordination dynamics in a qualitative manner and is able to indicate how they may contribute to clinical diagnosis and intervention.

Course content
The coordination dynamics approach is pursued to study how patterns of coordinated movement come about, persist and change as a function task constraints, learning, expertise and pathology. Coordination dynamics is governed on the one hand by principles of self-organization, and on the other hand by intentionality, perceptual information and explicit knowledge.
Coordination patterns exist at multiple levels:
1. dynamics within or between body segments of a moving person;
2. dynamics between moving segments of multiple persons and
3. dynamics between person and external events, as well as between
persons.
The first part of the course provides an overview of the principles, concepts and methods of coordination dynamics. The second part of the course focuses on the application of coordination dynamics in a clinical (rehabilitation) setting, with specific emphasis on pathological gait and interventions based on environmental coupling. Specifically, coordination dynamics provides a framework to study the nature of healthy and pathological movements by assessing stability and loss of stability of coordination patterns, thereby assisting the diagnosis and evaluation of rehabilitation-induced changes in coordination. Furthermore, coordination dynamics may promote therapeutic interventions based on environmental coupling, aimed at facilitating desired coordination patterns and/or stabilizing existing unstable coordination patterns.

Form of tuition

Amount of contact hours, divided in:

- Lectures: 8 * 1.75 hrs
- Laboratories: 2 * 2.00 hrs
- Computer Practicals: 5 * 2.00 hrs
- Exam: 2.75 hrs

Part 1: Principles of coordination dynamics
- Lecture 1: How nature handles complexity: self-organization of behavior
- Lecture 2: Coordination dynamics at multiple levels
- Lecture 3: Tools and methods of coordination dynamics
- Laboratory 1: Relative phase and phase transitions in action
- Practical 1: Analyses of rhythmic interlimb coordination
- Practical 2: Analyses of rhythmic sensorimotor coordination

Part 2: Clinical applications of coordination dynamics
- Lecture 4: Introduction to clinical coordination dynamics
- Lecture 5: Interventions based on environmental coupling
- Laboratory 2: Clinical coordination dynamics in action
- Practical 3: Functional changes in interlimb interactions following stroke
- Practical 4: Pathological gait modulation with visual and acoustic cues
- Lecture 6: Coordination dynamics and pathological gait
- Lecture 7: Coordination dynamics in the future
- Practical 5: Optional class for questions and feedback
- Lecture 8: Feedback on Laboratories and Practical plus discussion on example exam questions

The practical exercises aim to apply the principles of coordination dynamics to concrete experimental and clinical settings. The Laboratories entail hands-on experience with examining rhythmic interlimb and sensorimotor coordination as well as assessments and interventions involving environmental couplings in rehabilitation practice. The computer practicals are included to become acquainted with the handling and interpretation of the gathered data using methods of coordination dynamics (Matlab scripts and functions are provided; no programming skills required). Note that Laboratory 2 will be held at the Duyvensz-Nagel Research Laboratory of Reade Center for Rehabilitation and Rheumatology (DNO, Reade, Overtoom 283).

Type of assessment
Written exam, consisting of open questions and true/false statements.

Course reading
A selection of relevant book chapters and articles.

Electromyography

<table>
<thead>
<tr>
<th>Course code</th>
<th>B ELECTROMYO (900815)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. ir. D.F. Stegeman</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. J.H. van Dieen, prof. dr. ir. D.F. Stegeman</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Practical, Computer lab</td>
</tr>
</tbody>
</table>

Course objective
- The student has a basic knowledge of electrophysiology and the background of electromyographical; signals;
- the student has a basic knowledge of the different ways of collecting electromyographical data in various application fields;
- the student can collect and analyze EMG data for kinesiological use;
- the student can choose the appropriate method for collecting EMG data in kinesiological study;
- the student knows the possibilities and limitations of EMG data;
- the student can interpret EMG data in relation to motor control, force and fatigue;
- the student can identify contamination in EMG data and can apply methods to reduce its effects;
- the student knows the standards for reporting EMG data.

Course content
In this course, the students are introduced to the electrophysical background of electromyograph (EMG). Subsequently, the course focuses on methodological aspects of EMG acquisition and analysis, focusing on the potential of this method as well as its pitfalls.

Form of tuition
lecture
lecture 5 x 2 hours
practical
practical 3 x 2 hours
The lectures introduce the following topics:
- electrophysiology;
- motor control (motor unit recruitment and firing);
- instrumentation and electrodes;
- HD- EMG and spatio- temporal information;
- onset determination;
- amplitude estimation;
- force estimation;
- cocontraction and cross-talk;
- motor unit firing and decomposition;
- frequency content, conduction velocity and fatigue.
Practical: measuring EMG, analyzing EMG data.
Type of assessment
tentamen
Written test with open-ended questions.

Course reading
Research articles and lecture handouts to be made available before the course.

Entry requirements
The student should have a basic knowledge and understanding of the human musculoskeletal anatomy and biomechanics (statics).

Energy Flow Models

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_ENERFLOW (900675)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. J.J. de Koning</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. J.J. de Koning</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Computer lab</td>
</tr>
</tbody>
</table>

Course objective
To provide the student with knowledge about energy flow models, and so to enable the student to apply this knowledge in the modelling of human endurance performance.

Course content
Research in which exercise physiology and biomechanics are combined as a ‘toolbox’ is apparently unique and successful. This course familiarizes the student with one branch of this approach. Energy flow models, based on power equations, will be used to study performance determining factors in endurance sports. This course explains the technique of modelling, how parameter values are obtained from experiments and how simulations with the model can be done. The student will construct a model of an endurance athlete to study the effect of parameter values on performance in cycling, speed skating and running. The models will be made in MATLAB. Knowledge of MATLAB is necessary to be successful in this course.

Form of tuition
Lectures and guided practical;
34 hours (28 practical, 6 lecture).

Type of assessment
Written examination and practical report (30%/70%).

Course reading
A selection of articles and practical guide on Blackboard.

Entry requirements
900104: Biomechanica (Students are expected to have sufficient knowledge of this subject);
Entrepreneurship in Human Movement Sciences

Doel vak
Students obtain knowledge about and insight in the relevance of entrepreneurship and innovation for their own discipline. Students learn about the processes which are involved in the recognition and exploitation of opportunities, about creating economic and social value and about the nature and role of networks. In addition students gain knowledge of different entrepreneurial processes and the importance of valorization of findings and business ideas for a knowledge-based economy.

Inhoud vak
This course consists of two tracks: a theoretical track and a practical track. These two tracks run simultaneously.

In the first track you learn about entrepreneurship. Answers are found on questions such as: what is entrepreneurship? What defines an entrepreneur? What are entrepreneurial opportunities? What is the role of innovation in entrepreneurship? What is corporate social responsibility (CSR)? How can we judge the feasibility of entrepreneurial ambitions?

Simultaneously you work on an assignment (second track). In the first week of this course you search for an innovation in your own discipline (product, service, process etc.). Your choice must be approved by the lecturers. The first part of the assignment consists of a description of the innovation which you have chosen. Subsequently, you make a SWOT analysis and a network analysis of the innovation. Also a paragraph of CSR should be added. The final part of the assignment is your own feasibility study: how would you valorize the innovation to the market.

Onderwijsvorm
Lectures and workshops. Each week scientific lectures or practical workshops are given. These lectures are both the basis for the exam and for the assignment.

Toetsvorm
You conduct a written exam and an assignment. Both the exam and the assignment will determine 50% of the grade. The exam and the assignment must be of sufficient quality.
The course manual contains a list of online available articles.

Optional course for Master students 'Human Movement Sciences' 'Sport, Exercise & Health', 'Fundamental and Clinical Movement Sciences'.

Exercise and Health

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_EXERHEALTH (900667)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. E.A.L.M. Verhagen</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. T.M. Altenburg</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar</td>
</tr>
</tbody>
</table>

Course objective
The main objective of this course is to provide the students with the necessary tools to critically acclaim, discuss and understand the relationship between exercise and health.

By the end of this course the student is able to ...
- critically discuss (recent) literature on the relationship between exercise and health in a written report, culminating in an evidence based guideline towards preventive interventions
- critically assess (recent) literature on the relationship between exercise and health on its thesis, content, empirical rigor and applicability;
- deduct gaps in scientific knowledge; which hampers proper implementation of interventions in the field of practice
- to apply methodological principles of epidemiological research that apply to exercise and health research
- critically assess and discuss papers of fellow students on contents, structure, writing methodological rigor and originality

Course content
The overall aim of this course is to provide students with specific scientific knowledge on the methodology of health and exercise research, and to stimulate students to apply these techniques on a given exercise and health related issue.

Based on this baseline knowledge students will tackle, in small working groups, either a contemporary exercise related ‘health’ issue (e.g. type II diabetes) or an exercise related ‘injury’ issue (e.g. ACL injury).

Each group will produce a paper in which the lectured methodology is used, working towards an guideline for prevention.

Form of tuition
Lecture 6 times 2 hours
Seminar 4 times 2 hours

There are several lectures and tutorials on topics in exercise and health. Other than that students will produce a paper on a given topic.
in exercise and health, and reviews of the papers prepared by their fellow students.

Type of assessment
Students produce a paper (80%) and reviews about papers of other students (20% of the final grade). The paper and reviews must at least be of sufficient quality to pass the course.

Course reading
Course manual (available on blackboard)
Sheets provided during the course
Articles provided during the course

Background literature ...

Entry requirements
Fundamental knowledge about statistical techniques is strongly advised. These techniques are explained in chapters 1 through 3 of the mentioned ‘background literature’ reading. These techniques will not be further explained during the course.

Fatigue, Aging and Disuse

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_FATIGUE (900648)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 5</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. A. de Haan</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. A. de Haan, dr. R.T. Jaspers</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Seminar, Lecture</td>
</tr>
</tbody>
</table>

Course objective
At the end of this course the student has knowledge of the short term changes in the physiology of the neuromuscular system, as induced by fatigue and long term adaptations as a result of disuse and aging, and the underlying (molecular) mechanisms. The student can apply this knowledge to questions regarding human movement in various situations (e. g. sports, aging, illness, injury, disorders).

Course content
During the course, a critical overview is given of the current knowledge of short and long term adaptations of the neuromuscular system. The manifestation and (metabolic) mechanisms of neuromuscular fatigue during high intensity exercise is addressed using own research examples. Neuromuscular performance is impaired during aging and with a chronic decrease in usage, such as during bed rest, diseases, injuries, neuromuscular disorders and (most extreme) after a spinal cord injury. Underlying (molecular) processes leading to decreased performance of the neuromuscular system are discussed, mostly based on ones recent own research.
Form of tuition
The course will consist of a series of lectures during which relevant questions are addressed and discussed. In additional meetings relevant items are addressed in group discussions based on prepared questions/statements.

Type of assessment
Assessment
Written test with open-ended questions.

Course reading
Book chapters, research articles and review papers to be made available before the course.

Entry requirements
The student should have a basic knowledge and understanding of molecular, biology, exercise and muscle physiology.

Health and Society

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_HEALTHSOC (900664)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 1</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. M.B.M. Soethout</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Practical</td>
</tr>
</tbody>
</table>

Course objective
The students are able to demonstrate knowledge and understanding of:
• the important determinants of health and disease in the general population;
• the goals, strategies and principles for health promotion in a general and specific population (primary, secondary and tertiary prevention);
• the fundamentals of different health systems and their goals and functioning in practice;
• priority setting and decision making in the development and implementation of public health programs.

Course content
Lectures will provide an introduction in the theory and practice of important topics in public health: health policy and care systems, health monitoring, and health prevention and promotion. These topics will be further illustrated and discussed in a case-oriented tutorial. Also a critical analysis of a public health report is discussed in a tutorial. The students (in couples) then select a topic of interest (e.g. development or implementation of a program for health promotion) for further study, presentation and a final paper.

Form of tuition
Lectures (3 x 2 hours), and tutorials (2 + 2 + 3 hours).

Type of assessment
structured paper & presentation on a self chosen public health topic.
History and Theory of Movement Sciences

Course code	B_HTONMS (900661)
Period | Period 1
Credits | 3.0
Language of tuition | English
Faculty | Faculteit der Bewegingswetenschappen
Coordinator | dr. O.G. Meijer
Teaching staff | dr. O.G. Meijer
Teaching method(s) | Lecture, Seminar

Course objective
Students will be confronted with the overall development of movement science, and thereby better understand its central problems. A systems theory analysis is used to highlight the problem of relationships between different levels. Students are trained in critical reading of published papers.

Course content
Lectures: Introduction into the history of movement sciences, the relevance of systems theory, and the problem of the relationship between levels. Discussion in small groups: learning to discuss and analyze movement science papers.

Form of tuition
Lectures, discussion groups. Students who attend all discussions in small groups on movement science papers, and who have prepared these discussions appropriately, are exempted from the corresponding part of the written examination.

Type of assessment
Written examination.

Course reading
Lecture notes.

Intermuscular load Sharing

Course code	B_INMUSCLOAD (900809)
Period | Period 6
Credits | 3.0
Language of tuition | English
Faculty | Faculteit der Bewegingswetenschappen
Coordinator | prof. dr. J.H. van Dieen
Teaching staff | prof. dr. J.H. van Dieen
Teaching method(s) | Lecture, Computer lab
Course objective
The student knows the most common methods for inverse mechanical analysis of muscle-joint systems and is able to apply these. The student is aware of the possibilities and limitations of these methods. The student is able to assess validity and sensitivity of such methods and can interpret and report results in a scientific format.

Course content
In this course, the students are introduced to the methods to estimate the mechanical load on structures in a muscle-joint system through inverse mechanical analysis. Since muscle-joint systems are mechanically indeterminate, estimating the distribution of the net moment over moment-producing structures (mainly muscles) is the main challenge. The course consists of three parts. In the first part, after a general introduction on EMG driven and optimization models for estimating the distribution of the net moment over muscles will be dealt with and data on load sharing as measured in animal experiments will be discussed in the context of such models. During a computer lab students will modify and use a simple model of a muscle-joint system driven by optimization. In the second part, the effects of myofascial transmission of force between muscles will be introduced in a lecture. In the subsequent computer lab, the model will be adapted to study the effects of intermuscular force transmission. In the third part of the course, a formal analysis of joint stability will be introduced and the effects of stability requirements on load sharing between muscles will be discussed. In the following computer lab, students will apply stability constraints in the model to further study these effects. Based on sensitivity analyses for specified inputs, parameters, or model assumptions with the model students will prepare a written report with respect to one of three questions related to the three parts of the course.

Form of tuition
16 contact hours, divided in:
Lectures 5 * 2 hours
Practicals 3 * 2 hours

Type of assessment
- Written report.

Course reading
A series of papers will be made available at the start of the course.

Entry requirements
The student should have a basic knowledge and understanding of The student should have a basic knowledge and understanding of the human musculoskeletal anatomy (e.g. the BSc course "Inleiding Functionele Anatomie") and biomechanics (e.g. the BSc course “Mechanische Analyse van het Menselijk Bewegen” or Chapters 1-5 in Zatsiorsky, V. Kinetics of Human Motion. 1st ed. Human Kinetics, 2002). The student should have basic Matlab programming skills (e.g. as taught in the BSc course “Analyse van digitale signalen”).

Maximal Neuromuscular Performance

| Course code | B_MAXNEUR (900678) |
Course objective
The student has knowledge of the role of muscle activation and (changing) muscle properties on maximal human neuromuscular performance during high intensity exercise and the student has knowledge of the relevant research methods.
The student can apply this knowledge to questions regarding testing and improving of maximal neuromuscular performance in sports (and rehabilitation).
The student is able to evaluate the validity and relevance of basic scientific literature for neuromuscular performance in a sport (rehabilitation) related context.
The student will be able to communicate (‘translate’) the implications of basic scientific knowledge of neuromuscular performance to practical issues raised by coaches and therapists in the field of sports (and rehabilitation).
The students will learn to critically read scientific papers on neuromuscular performance published in international journals.

Course content
During the course, a critical overview will be given of the current knowledge of maximal neuromuscular performance during relatively high intensity exercise of short duration (40 ms up to 5 min). Most examples will be provided from own research. The emphasis will be on the coupling between basic knowledge of muscle activation and (changing) muscle properties during human movement and their consequences for testing and training.
The following subjects will be addressed:
• Voluntary activation;
• Explosive force/power;
• Influence of temperature (incl. warm-up);
• Potentiation;
• Low frequency fatigue;
• Shortening deficit and lengthening force enhancement;
• Recruitment of motor units.
• Muscle oxygenation

Form of tuition
7 Lectures (‘hoorcolleges’): 14 hours
Assessment: 2.75-hour exam with open-ended questions.

The course will consist of a series of (four) lectures on basic neuromuscular properties, during which relevant practical questions will be postulated. These questions are addressed by the students in (four) tutorials, which alternate with the lectures.

Type of assessment
2.75-hour exam with open-ended questions.
Entry requirements
Sufficient knowledge of the basics of Muscle Physiology is absolutely necessary. In order to successfully participate, the students have to be familiar with the following concepts: twitch, tetanus, length-force, force- and power-velocity, and stimulation frequency-force relations, the size principle of motor unit recruitment, EMG, electrical stimulation, fibre type related differences in contractile properties, cross-bridge kinetics, excitation contraction coupling.

Neurorehabilitation in the Context of Movement Sciences

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_NEURREHMS (900659)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. G. Kwakkel</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Course objective
The student is capable to:
- understand mechanisms of functional recovery related to stroke;
- understand the pathophysical processes and symptoms that characterize stroke, Parkinson's Disease and Multiple Sclerosis;
- understand clinical decision making in neurorehabilitation for management of patients with stroke, Parkinson's Disease and Multiple Sclerosis;
- acknowledge the importance of ICF- model in rehabilitation medicine.

The student is able to:
- interpret the clinical relevance of selected measurements of outcome;
- categorize measurements of outcome used in rehabilitation medicine;
- understand the clinical decision making process for functional prognosis in Multiple Sclerosis, Parkinson's Disease and stroke.

Course content
Within eight lectures the significance of movement science in the field of neurorehabilitation is elucidated. Practical examples are given on how theories on motor control, perception and behavior can be applied in clinical research. On the other hand, the emphasis of these lectures is placed on how movement scientists may collaborate in clinical research of patients with neurological diseases such as stroke, Parkinson's Disease and Multiple Sclerosis. In order to improve knowledge transfer from preclinical to clinical research (i. e., translational research), students will be educated in the state of art about the underlying mechanisms of functional recovery and the role of adaptive motor control in mentioned neurological diseases.

Form of tuition
lecture
8 lectures
Lectures in blocks of 2 x 50 minutes.

Type of assessment
50 multiple-choice questions. Re-examination will consist of 3 to 4 open ended questions (written test).

Course reading
Manuscripts (SCI) will be downloadable from BlackBoard.

Entry requirements
Students should have knowledge and understanding of ICF model in rehabilitation medicine.

Normal and Abnormal Motor Development

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_MOTORDEVEL (900668)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. A. Ledebt</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. A. Ledebt</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar</td>
</tr>
</tbody>
</table>

Course objective
Students should be able to identify, summarize, critically evaluate and expand upon topics regarding the development of perceptual-motor behavior in normal and populations at high-risk for abnormal motor development. Students are acquainted with different types of qualitative motor assessments and instruments to quantify motor performance. They are able to identify early alarm signals and describe the advantages and disadvantages of several tools to diagnose disorders involving motor problems. They are able to describe perceptual and motor problems of several developmental disorders (e.g. cerebral palsy, developmental coordination disorder).

Course content
The course deepens the understanding of normal and abnormal motor development and developmental disorders in foetuses, infants and young children. Lectures and tutorials provide insight into actual problems in the research and practice of perceptual-motor development, particularly in the area of health sciences. The lectures present an overview of the developmental disorders in which motor problems are either defining characteristics (i.e., cerebral palsy) or form part of a larger spectrum of difficulties (i.e., autism, ADHD). Symptoms will be described and diagnostic criteria will be discussed. The main rehabilitation methods will be related to theories on development.

During tutorials the students learn to discriminate abnormal from normal movements in foetuses, infants and young children and are introduced to different types of measurement tools used to quantify motor performance.

Form of tuition
Final written exam. Attending the tutorials and writing the reports linked to them are compulsory. The reports and the critical review have to be marked as “pass” by the lecturer.

9 lectures en 2 tutorials (2 hours each)
Type of assessment
Final written exam with open-ended questions. Attending the tutorials is compulsory. The critical review has to be marked as “pass” by the lecturer.

Course reading
Reader.

Entry requirements
Bases in neurophysiology and neuroanatomy.

Perception for Action

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_PERCACTION (900810)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. J.B.J. Smeets</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. J.B.J. Smeets</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Computer lab</td>
</tr>
</tbody>
</table>

Course objective
The student is able to:
- describe the functioning of the sensory systems relevant for motor control;
- interpret scientific literature in the area of perception and apply it to the field of motor control.

Course content
The topic of this course is the question: how is sensory information processed to guide ones action? More specific: how do we know where a target and (a part of) our body is? The answers to these questions require knowledge about the sensory organs, their signals, and how these signals are processed and combined to be used to control our actions. The main focus will be on the various aspects of visual information (localisation, motion perception, binocular vision, eye movements), but proprioception, haptics, and vestibular information are also treated. The discussion will be about both the phenomenology and the mechanisms. For the latter, some mathematical models describing the coupling will be discussed.

Form of tuition
Amount of contact hours:
Lectures (‘hoorcolleges’) 7
Tutorials (‘werkcolleges’) 7
Assignments & self study 68
Practicals 2

Each meeting will be a combination of tutorial consisting of a discussion of the previous assignment (1 hour), and a lecture introducing to the topic of the next assignment (1 hour)

In the practical, the students will compare two psychophysical
techniques and discuss their effectiveness in answering the question what perceptual information is available.

Type of assessment
After each lecture, students receive an assignment. Six of them have to be handed in before the next meeting. These assignments are graded, and count for 10% of the final grade. The assignment after the final lecture will contribute 35%: the remaining 5% on completion of the practical.

Course reading
Literature needed for the course will be distributed during the course.

Entry requirements
No entry requirements. Basic knowledge of the nervous system is expected (e.g. function of various brain areas).

Remarks
- The maximum number of participants in this course is limited to 40

Perceptual-motor Learning

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_PERCML (900682)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. G.J. van der Kamp</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. G.J. van der Kamp</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar</td>
</tr>
</tbody>
</table>

Course objective
- The student is capable to describe, summarize and compare the key concepts, experimental methods, and empirical evidence for contemporary theories of perceptual-motor learning;
- The student is capable to apply knowledge from contemporary theories of perceptual-motor; learning to provide insight; into concrete problems and common habits in the practice of sport and rehabilitation with respect to perceptual-motor learning;
- The student is capable to critically assess and evaluate the underlying assumptions and empirical evidence for the contemporary theories of perceptual-motor learning. The student is able to evaluate the applied value of the contemporary theories for the practice of perceptual-motor learning in sports and rehabilitation;
- The student is capable to orally present a concise summary of the main contributions of contemporary theories of perceptual-motor learning for applications in practice of sports and rehabilitation. The student is capable to contribute to discussions regarding the applied value of the contemporary theories for the practice of sports and rehabilitation.

Course content
The course provides a capita selecta of contemporary theories of perceptual-motor learning, such as the ecological approach (e.g., Gibson, 1979), common-coding approach (e.g., Prinz, 1997) and
neuropsychological approaches to perceptual-motor learning (e.g., Willingham, 1998). Besides a concise overview of the key concepts, hypothesis and experimental methods and empirical support for these theories, the course addresses the significance and (possible) applications of these theories for the practice of sports and rehabilitation.

Form of tuition

lecture

tutorial

Three lectures provide the student with an introduction into the three contemporary approaches to perceptual-motor learning. The lectures give a short background to the theories and provide a critical discussion of the key concepts and empirical evidence. During the tutorials the student applies the contemporary theories to the practice of perceptual-motor learning in sports and rehabilitation by proposing theory-derived solutions to 'problems from practice'. Assessment 40 hours and for preparation tutorials 20 hours.

Type of assessment

The student receives two marks. First, each student writes a short essay that discusses an application of the contemporary theories of perceptual-motor learning to the practice of sports and rehabilitation. Second, the course will be concluded with a written exam consisting of open-end questions. The mean of these marks gives the final mark for the course. Neither of the partial marks is allowed to be below a six.

Course reading

A collection of recent theoretical and experimental papers from the scientific literature (details to be announced).

Practical Internship

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>B_PRACINTERN (900680)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
</tbody>
</table>

Doel vak

The course is intended to introduce students to a company, institute or organization with the aim of gaining insight into the way Human Movement Science can be applied within a company, institute or organization or otherwise be applied in such a way that the student can make an optimal impression for the sector concerned within the job market.

Inhoud vak

Practical internships can be taken at various companies, institutes or organizations, which is why there can be considerable differences regarding the content of the internship. Generally speaking students will receive a written assignment containing, in any case, what is expected of the student within the framework of the internship. The student is expected to become familiar with the activities within the company, institute or organization, as well as gaining insight into the role of their assigned department within the organization. This includes...
evaluating which Movement Sciences aspects are applied within in the
department and which aspects could be applied in the future.

Psychological Factors in Sport

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_PSYFACSPRT (900676)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 2</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. R.R.D. Oudejans</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. R.R.D. Oudejans</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar, Meeting</td>
</tr>
</tbody>
</table>

Course objective
The student is able to:
- give an overview of several psychological factors that play a role in
 sport, the assumed working mechanisms as well as ways of influencing
 these factors with mental training;
- critically assess (recent) literature about psychological factors in
 sport and sport psychology on its thesis, content, empirical rigor and
 applicability;
- critically discuss (recent) literature about psychological factors in
 sport and sport psychology in a written report, culminating in the
 evaluation of the literature and a discussion of implications for sport
 (psychology) practice;
- critically assess and discuss papers of fellow students on contents,
 structure, writing and originality.

Course content
In this course several psychological factors that determine performance
in sports will be discussed with special focus on the role of
attention, anxiety and anticipation and decision- making. Because these
topics are crucial in sports practice and because they have a prominent
place in research at the Faculty of Human Movement Sciences. Other
than that the content is for a large part determined individually as
each student writes a paper in a key topic in sport psychology.

Form of tuition
lecture 5 times 2 hours
discussion tutorial 1 meeting 4 hours
There are several lectures on topics in sport psychology. Other than
that students will produce an individual paper on a topic in sport
psychology and reviews of the papers of their fellow students.

Type of assessment
Students produce a paper (80%) and reviews about papers of other
students (20% of the final grade). The paper and reviews must at least
be of sufficient quality to pass the course.

Course reading
- Course manual (available on Blackboard);
- Recent articles and book chapters on psychological factors in sport
 and sport psychology.
Background literature:
Entry requirements
Students should have basic knowledge and understanding of sport psychology as is available in textbooks such as Cox, R.H., Sport Psychology: Concepts and Applications, 6th edition. Boston: McGraw-Hill, 2007.

Rehabilitation: Restoration of Mobility

Course objective
The student is capable to:
• understand the relevant issues, terms, concepts, and models in the restoration of mobility within the context of rehabilitation,
• understand and knowledge of the practical aspects of patient-related – biophysical - research into restoration of mobility in rehabilitation,
• Develop knowledge, understanding and skills in (clinical) human movement research results, methods and techniques of measurement of ‘function & structure, activity, participation and functionality,
• Appreciate and understand various aspects of adaptation, compensation, training and learning of function and activities in the framework of restoration of mobility in persons with lower limb impairments,
• understand the contexts, and the practical process of scientific research and communication in the combined fields of rehabilitation and human movement sciences.

Course content
Being the key-issue in rehabilitation, this course concentrates on the ‘restoration of mobility’ – and its underlying mechanisms - at the different levels of the International Classification of Functioning, Disability and Health (WHO 2001). Primarily a biophysical approach is taken: biomechanical and exercise physiological principles, techniques and research findings will be discussed in specific patient-related experiments and studies. Aspects of adaptation, compensation as well as concepts of learning and training mechanisms will be addressed. Research in this field will be presented and discussed in the format of ‘Capita Selecta’.

Form of tuition
7 lectures of 2 hours, 2 working visits of 4 hours, written assignment (in pairs) 40 hours, self study 22 hours.

Type of assessment
Written exam with essay questions (70%), written assignment (30%).
Course reading
A selection of scientific papers.

Entry requirements
None.

Research Internship

<table>
<thead>
<tr>
<th>Course code</th>
<th>B RI (900624)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Aca. Year (September)</td>
</tr>
<tr>
<td>Credits</td>
<td>24.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
</tbody>
</table>

Course objective

During the research internship, students conduct scientific research in a 'master - pupil relationship'. The research must meet the following qualifications:
- The research is aimed at a suitably challenging research question;
- The research is conducted in a methodologically correct way;
- The research is related to and is based on the theory that applies to planned research.

The teaching focus of the internship is on gaining insight into the connection between the components of the research process, namely formulating a research question, creating a hypothesis, planning and conducting experiments, processing data, interpretation of the results and reporting. It should be kept in mind that 'experiments' should not be interpreted too narrowly: these can also be field measurements, or epidemiological research.

Form of tuition

The student pair or student conducts the research internship under the guidance of a faculty staff member. The internship is often part of a larger project. The subject of the internship is chosen in consultation with a staff member and/or the coordinator. It is also possible for a student to choose one's own subject, in consultation with the coordinator. Proposals for an internship from staff members and external partners can usually be found on Blackboard ('Research Internship'), although it might be worthwhile contacting the Research Group Leaders (PI) of research institute MOVE for information on the latest possibilities. The Research School MOVE website (www. move. vu. nl) is an appropriate orientation on the Research Internship. In consultation with the coordinator, a student may conduct the research internship outside the faculty or abroad. Especially for foreign projects, additional requirements related to courses followed and obtained grades might apply. Above all, an internship abroad requires an early start to have sufficient time for the much more complex organization of the internship (at least 1 year before the start of the internship). Once the subject and the internship supervisor(s) have been established, the student writes a work plan for the research internship, comprising research question, hypothesis(es), methods statistics and planning. Beyond time schedule, the latter should include choices for equipment and indications for organization of the work. If the work plan is approved by the internship supervisors, it has to be presented during a work group meeting of the specialization.
to which the students belong, or, if applicable, a meeting of the specialization in which the work is best suited. Reporting takes place in the form of an English language formal paper, or research report (depending on the internship). Research results also have to be presented at a work group meeting at the end of the process. Every student has a right to consultation and supervision during the research internship. The available time for supervision depends on the size of the internship and is in the order of 30 hrs for an individual 24 ECTS internship (and for a pair 60 hrs).

Type of assessment
The evaluation of the research internship consists of three elements, namely:
- the performance of the experiments and specifically the data collection and processing;
- the report;
- the oral presentation of the report during the work group meeting.
The performance of the experiments is judged by the internship supervisor(s), the report and the oral presentation are judged by both the internship supervisor(s) and a second assessor. The performance of experiments makes up 40% of the mark, the report makes up 50% and the oral presentation makes up the final 10%.

Course reading
Course Manual 'Research Internship', available on Blackboard.

Remarks
After the mark has been established, two written copies of the report, accompanied by two complete evaluation forms, must be handed over to the coordinator of the study secretariat Ms. M. E. Platteel. The final version of the report has to be submitted to the Research Internship Blackboard site for a plagiarism check before the mark can be registered by the student administration office. In case the electronic check should lead to a formal check, the administration of the final mark may be postponed until a final assessment by the Examination Commission had been made.

Short Literature Review

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_SLR (900601)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Ac. Year (September)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
</tbody>
</table>

Course objective
The aim of the Short Literature Review is to determine whether a student can formulate a research question and an objective answer to this question related to Human Movement Sciences based on peer-reviewed literature and is subsequently able to express these findings in a written report. Secondly, the Short Literature Review will serve as an evaluation of the student's skills in scientific writing. The Short Literature Review is an individual product.

Course content
The student chooses a subject related to Human Movement Sciences on which to write the Short Literature Review. The subject of the Short Literature Review should not be related to the subject of the Research Internship.

Form of tuition
The student formulates a question related to Human Movement Sciences, which should be approved by a staff member of the department. In forthcoming cases, the coordinator may allocate a supervisor, usually on the basis of the chosen subject and availability. At the start of the writing process, the student draws up a plan. This plan must contain a detailed presentation of the question for the Short Literature Review, a literature search strategy and a temporary classification (i.e. chapters or paragraphs). The student collects and selects relevant literature for the Short Literature Review and writes a report on the chosen subject. Regular consultation with the supervisor is recommended. The student is entitled to 12 hours of supervision. The completed Short Literature Review may be presented during a research meeting of one of the specializations.

Type of assessment
If the student or supervisor feels that this is necessary a second opinion can be asked for.

Course reading
Course manual Short Literature Review (available on Blackboard).

Remarks
The final version of the Short Literature Review has to be uploaded to the relevant Blackboard site for a plagiarism check. The electronic evaluation form has to be filled in before the mark can be registered by the study secretariat.

Sport and Society

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_SPORTSOC (900665)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 1</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. I.M. van Hilvoorde</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. I.M. van Hilvoorde</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar</td>
</tr>
</tbody>
</table>

Course objective
The student:
• is able to understand and conceptualize sport as a social phenomenon
• has understanding and knowledge of the main sport sociological issues and controversies
• is able to translate these issues and understands its consequences for sports policy.
• is able to understand and apply theories that conceptualize the relations between technology and sport
• is trained in critical reading and evaluation of papers from a
conceptual and sport sociological perspective

Course content
Students get acquainted with general theories about sports and society, and are able to apply these theories on the following key issues:

- The organization and evolution of sport
- Connections between sport and other spheres of social life (cf. education, public health)
- Connections and interdependencies between sport and globalization, commercialization, technology and the media
- Relations between sport success, heroism and national pride
- The question if sports and politics can and/or should be kept separate
- The way in which elite sport enforces cultural ideologies concerning human bodies and deviance (in particular in relation to human enhancement, doping or the boundary between “able bodies” and “disabled bodies”).

Form of tuition
Amount of contact hours:
- Lectures: 12 hours
- Tutorials: 10 hours
- Assessment: paper

Combination of Lectures and Tutorials

Type of assessment
- paper/reviews

Course reading
- Selection of relevant articles, lecture notes.

Entry requirements
Recommended background knowledge: Philosophy of sport.

Sport Biomechanics

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>B_SPORTBIO (900673)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Periode 5+6</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Engels</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>dr. ir. J.W. van der Eb</td>
</tr>
<tr>
<td>Lesmethode(n)</td>
<td>Hoorcollege, Practicum, Computerpracticum</td>
</tr>
</tbody>
</table>

Doel vak
To apply biomechanical knowledge to sports related problems and understand the difficulties of performing research for the daily support of Athletes.

Inhoud vak
The course will focus on the biomechanical analysis of movements in technical sports. This year the course will focus on areal movements in the flight phase. A mathematical description of the flights phase and the relation between the different rotations about the body axes will be
analyzed in detail. In the first part of the practical work the rotational modes of a free body will be analyzed.

In the second part of the practical work a problem from daily sports practice will be analyzed and a proposal will be made as to how the problem can be dealt with and what the implications are for the coach and athlete.

Knowledge of biomechanics, inverse and forward dynamics will be used to tackle current biomechanical problems from gymnastics. Basic and advanced analysis techniques will be discussed and there usability for sports practice.

Onderwijsvorm
Lecture
Practical work

Toetsvorm
Practical report and Oral presentation

Literatuur
Will appear on blackboard.

Aanbevolen voorkennis
A good understanding of biomechanics, inverse and forward dynamics is required:
900104: Biomechanica (Students are expected to have sufficient knowledge of this subject)
9 inverse dynamica (Students are expected to have sufficient knowledge of this subject)
900215: Mechanische analyse van het menselijk bewegen (Students are expected to have sufficient knowledge of this subject)
The course will be using Matlab.

Statistics for Experimental Research

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_STATEXPRES (900683)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 4</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
<tr>
<td>Language of tuition</td>
<td>English</td>
</tr>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>dr. M.J.M. Hoozemans</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>dr. M.J.M. Hoozemans</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture, Seminar, Computer lab</td>
</tr>
</tbody>
</table>

Course objective
On the basis of case descriptions and raw data the student is capable to:
• determine the research designs and choose, justify and perform the appropriate statistical analyses (t-tests or ANOVAs or their non-parametric counterparts) using SPSS.
• report the analyses and the results in the same way as is commonly done in methods and results sections of scientific journal articles.
Course content
Students will learn ins and outs of applying and interpreting statistical techniques that are common or are becoming common in experimental research. The topics covered in this course are:
• Research design
• Basic statistical principles (e.g. data exploration)
• Estimating a population mean from a sample
• Independent and paired t-tests and their associated confidence intervals
• Non-parametric difference tests
• One-way ANOVA (between subjects and repeated measures)
• Factorial ANOVA (two-way between subjects, two-way repeated measures, two-way mixed design)
• Effect size
• Data transformations
• Power and sample size estimation

There will be lectures and SPSS practical sessions for all the topics covered in the course.

Form of tuition
The four days of teaching are taken up with lectures, tutorials and SPSS practical sessions with session assignments in which students perform statistical tests.

Type of assessment
The students have to take an interim examination. It will focus on t-tests, non-parametric difference tests, one-way ANOVA and factorial ANOVA.

Course reading

Studentbegeleiding

<table>
<thead>
<tr>
<th>Vakcode</th>
<th>B_STDBEG ()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periode</td>
<td>Ac. Jaar (september)</td>
</tr>
<tr>
<td>Credits</td>
<td>6.0</td>
</tr>
<tr>
<td>Voertaal</td>
<td>Nederlands</td>
</tr>
<tr>
<td>Faculteit</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coördinator</td>
<td>drs. M.G.J. Buijtenweg</td>
</tr>
</tbody>
</table>

Talent Identification and Development

<table>
<thead>
<tr>
<th>Course code</th>
<th>B_TALDEVEL (900672)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>Period 3</td>
</tr>
<tr>
<td>Credits</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Course objective
Students are able to summarize and examine the implications of adopting a multi-disciplinary research perspective for the comprehensive study of talent development and identification, and identify and elaborate upon the limitations of existing (mono-disciplinary) research on talent identification and development (expert performance). Additionally, students are able to make recommendations for future research on understanding talent development and for implementing talent developmental programs.

Course content
In recent years, research on expertise and the identification and development of talent has tended to be mono-disciplinary. In the current course a multi-disciplinary approach is emphasized. The lectures discuss the environmental influences, but also deal with genetic issues and the interplay between the two from the various disciplines within human movements sciences among others, philosophy, psychology and physiology. The course addresses several issues, that all seem to play a part in talent identification and development. Like the amount of deliberate practice, the use of visual information, cognitive abilities, genetic make up or constraints, anthropometric characteristics, muscle structure and amount of fast and slow twitch muscle.

Form of tuition
lecture
Six lectures provide the student with an introduction into the contemporary approaches to talent identification and development.

Type of assessment
The course is concluded with a written test consisting of open-end questions.

Course reading
A collection of recent theoretical and experimental papers from the scientific literature (details to be announced)

Entry requirements
None

Teacher Training at the Upper Secondary Level

<table>
<thead>
<tr>
<th>Language of tuition</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>Faculteit der Bewegingswetenschappen</td>
</tr>
<tr>
<td>Coordinator</td>
<td>prof. dr. G.J.P. Savelsbergh</td>
</tr>
<tr>
<td>Teaching staff</td>
<td>prof. dr. G.J.P. Savelsbergh</td>
</tr>
<tr>
<td>Teaching method(s)</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Course code | B_DOCENTHBO (900630) |
Period | Ac. Year (September) |
Credits | 24.0 |
Language of tuition | Dutch |
Faculty | Faculteit der Bewegingswetenschappen |
Teaching method(s) | Seminar |
Course objective

Het doel van de docentenopleiding is dat de studenten de competenties van een beginnende docent verwerven. Zodat zij over kennis, inzicht, vaardigheden en attituden beschikken die hen in staat stellen als docent te functioneren en hun taken en taakuitvoering kritisch te evalueren en te veranderen.

Course content
Het opleidingsprogramma bestaat uit de volgende onderdelen: vier didactische cursussen, een professionaliseringstraject, een onderwijsinnovatieproject en een stage. De didactische cursussen zijn erop gericht de studenten kennis, inzichten, vaardigheden en attituden te verschaffen die nodig zijn voor het voorbereiden, uitvoeren en evalueren van onderwijs. Hierbij gaat het voornamelijk om het voorbereiden, verantwoorden en verzorgen van lessen (hoorcolleges, doceerlessen, werkgroepbegeleiding en vaardigheidslessen), het begeleiden van individuele studenten en het ontwikkelen en afnemen van toetsen. Het professionaliseringstraject biedt ondersteuning bij je ontwikkeling tot hbo-docent. Voor het onderwijsinnovatieproject voeren studenten in een projectgroep een opdracht van een hbo-instelling gericht op een onderwijsvernieuwing uit. De stage verschaf de studenten kennis en inzicht in de onderwijs- en lesgeefpraktijk op een hbo-opleiding alsmede vaardigheid in het geven van onderwijs. De stage is het onderdeel van de docentenopleiding waarin integratie van de theorie in de praktijk plaatsvindt: vrijwel alle cursussen lopen vooruit op of grijpen terug naar activiteiten die studenten in de stage ondernemen. De stage loopt van september tot en met april. In overleg met de stage-instelling maakt de student een rooster waarin hij aangeeft wanneer hij (gemiddeld 1 dag in de week) op de instelling aanwezig is. Tijdens de stage dienen zowel lessen geobserveerd als gedoceerd te worden. Minimaal één les staat onder supervisie van de docentenopleiding en één les wordt vakinhoudelijk beoordeeld door een vakinhoudelijk deskundige docent. Daarnaast wordt onder begeleiding van de stage-instelling en de docentenopleiding, in de stage gewerkt aan een aantal opdrachten.

Overzicht van de studieonderdelen:
• didactische basisprincipes
• onderwijs aan groepen
• toetsen en beoordelen
• studentbegeleiding
• professionaliseringstraject
• onderwijsinnovatieproject
• stage

Form of tuition
Binnen de didactische cursussen vindt thuis kennisoriëntatie plaats aan de hand van opdrachten. Tijdens de bijeenkomsten staat veelal de praktische toepassing centraal en werken de studenten aan de hand van
oefeningen/opdrachten veel met elkaar samen in subgroepjes. Deze werkwijze maakt het noodzakelijk dat de studenten elke bijeenkomst bijwonen en actief participeren; aanwezigheid is verplicht.

Type of assessment
Om de docentenopleiding af te ronden dient de student aan de hand van een beoordelingsportfolio en een beoordelingsgesprek te bewijzen de docentcompetenties op het niveau van een beginnend docent te bezitten. Hiertoe zal de student voldoende bewijslast moeten verzamelen. Kenmerkend voor deze toetsvorm is dat de verantwoordelijkheid meer bij de student komt te liggen, aangezien deze deels zelf bepaalt hoe en waarneemt hij de verschillende competenties onderbouwt. Een aantal bewijsstukken is voorwaarde om de docentenopleiding af te ronden.

Course reading
De boeken en de handleidingen worden verkocht tijdens de bijeenkomsten. De kosten bedragen ongeveer EUR 225,- en dienen voor het eind van de reguliere cursusduur betaald te worden.

Remarks
Het ministerie van OC&W heeft in de jaren 90 regelingen opgesteld inzake de benoembaarheidsvereisten voor docenten hbo. Een hbo-docent dient naast het bezit van een bewijs/verklaring van bekwaamheid (een getuigschrift van met goed gevolg afgelegd afsluitend examen Bewegingswetenschappen) ook in het bezit te zijn van een bewijs/verklaring van voldoende didactische voorbereiding. De benodigde didactische vaardigheden dient de docent op sommige hogescholen zich eigen te maken door het volgen van een didactische opleiding (hbo-didactische cursus) nadat hij is aangesteld als docent binnen het hbo. Studenten die de docentenopleiding FBW met succes hebben afgerond wordt vrijstelling verleend voor de hbo-didactische cursus, mits zij niet langer dan vijf jaar na het afronden van de docentenopleiding met de hbo-didactische cursus beginnen. Geïnteresseerden die hun Master of Doctoraal reeds behaald hebben en niet meer ingeschreven staan als student kunnen indien er plaats is aan de opleiding deelnemen als contractstudent. De kosten hiervoor worden geschat op € 2780,- te voldoen aan het begin van de opleiding. De docentenopleiding start in september en wordt afgesloten in mei. De vaste lesdag op de VU is de vrijdag.

Afhankelijk van de beschikbaarheid van externe stageplaatsen en de begeleidingsmogelijkheden is er een flexibele bovengrens in toelatingplaatsen. Bij meer aanmeldingen dan plaatsen kan de docentenopleiding besluiten een toelatingsassessment te laten plaatsvinden. Aanmelding dient schriftelijk te gebeuren vóór 1 mei op een daarvoor bestemd formulier. Voor een volledige beschrijving van het opleidingsprogramma wordt verwezen naar het leerplan. Dit leerplan en het aanmeldingsformulier zijn te vinden op http://www.exposz.nl/sport/docentenopleiding-fbw/